Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Type I : Mathematical Investigation DIFFERENTIATING TRIGONOMETRIC FUNCTIONS This assignment will be assessed against all 6 criteria _______________________________________________________________________________ Part 1 Below is a sector of radius r and angle . If and tan . You must clearly show your reasoning. is very small, find expressions for sin , cos r r Solution : If the angle is very small, BC= BC = r (1) from the triangle BC .r = . r AB AC r 1 cos = AB r BC .r tan = = . AC r sin = (2) From further calculation: sin = BC .r = . r AB cos = 1 sin 2 1 2 1 2 = 1 (1 ) 1 2 ... 2 2 {this can be get from binomial theorem} because is very small, so we can just calculate the first two term . cos 1- 1 2 . 2 sin sin sin 1 sin 2 1 2 1 (1 2 ...) 2 2 2 2 tan = cos 2 1 sin 1 1 1 sin {this is also get from binomial theorem} because is very small, so we can just calculate the first two term . tan 1 2 2 2 2 3 (1.) 2 2 1 2 1 2 2 2 2 ---------------------------------------------------------------------------------------------------------------------Part 2 (i) With the aid of your GDC, investigate the results of Part 1. (ii) Investigate also lim 0 sin and lim 0 tan . Solution: {in this question,press “STAT”,choose “Edit”,then show below} (i) {put numbers in L1( ),let L1 0 , put the formula sin(LI) in L2} as the graph showing, when ,L1 0, L 2 L1 ,so 0, sin {put the formula cos(L1) in L3} as the graph showing, when ,L1 0, L3 1 ,so 0, cos 1 . {put the formula tan(L1) in L4} as the graph showing, when ,L1 0, L3 L1 so 0, tan (ii) {put the formula sin L1 in L2} L1 as the graph showing, when L1 0, L 2 1 ,so lim 0 sin =1 -----------------------------------------------------------------------------------------------------------------{put formula tan L1 in L2} L1 as the graph showing, when L1 0, L 2 1 , so lim 0 tan =1 ---------------------------------------------------------------------------------------------------------------------Part 3 Consider the right-angle triangle OTB containing the sector OAB of radius a. By considering appropriate areas, show that 1 Hence determine the lim sin 0 sin cos , clearly showing your reasoning. Solution: In AOB, AQ a sin , In BOT , BT a tan , By considering appropriate ares, we know: area AOB area sec torAOB areaBOT 1 1 1 a 2 sin a 2 a 2 tan {from the formula of triangle(area =1/2 ah),and the 2 2 2 formula of sectors(area = 1/2 rl)} sin tan s i n co s 1 1 cos sin sin s i n product by sin ,which is positive, as 1 sin 2 : cos 0, cos 1, so 1 lim 0 sin sin 1 =1 ---------------------------------------------------------------------------------------------------------------------Part 4 Consider the function f(x) = sin x ,x [0, 2 ]. By investigating the gradient of this function , deduce f ’(x). You may wish to draw appropriate graphs on your GDC. Solution: {in this question, should use “Y=” to enter the function, then “WINDOW” enter the range, and “GRAPH” to draw the graphs, showing as below } {as we known, the graph is like the graph of the function of y=cosx, so compare with the graph of y=cosx} as the graph showing, the graph of y=cosx is the same as the graph of f’(x), so f’(x)=cosx ------------------------------------------------------------------------------------------------------------------Part 5 Prove your conjecture in Part4 from first principles, showing clearly your reasoning. Solution: y sin x dy sin( x x) sin( x) lim dx x 0 x 2 cos( x x ) sin( x 2 2 = lim x 0 x x x cos( x ) sin( ) 2 2 = lim x x 0 2 = lim cos( x x 0 ∵ lim cos( x x x 0 sin lim x 0 x 2 x 2 ) sin ) lim x 0 x 2 x 2 ) = cos x 2 1 x 2 dy sin( x x) sin( x) lim ∴ f ' ( x) = dx x 0 x = lim cos( x x 0 x 2 sin ) lim x 0 x 2 x 2 = cos x ---------------------------------------------------------------------------------------------------------------------Part 6 If h(x) = cos x, deduce h ‘(x) Solution: {in this question, should use “Y=” to enter the function, then “WINDOW” enter the range, and “GRAPH” to draw the graphs, showing as below } {As we known, the graph of the h’(x)is like the graph of the function of y=-sinx,so, compare with the graph of y=-sinx} as the graph showing, the graph of y=-sinx is the same as the graph of h’(x),so h’(x)= -sinx Part 7 Prove your conjecture in part 6 from first principles, showing clearly your reasoning Solution: ∴ h' ( x ) = dy cos( x x) cos( x) lim dx x 0 x According to the double angle identify: cos 1 2 sin 2 2 ∴ cos( x x) cos x = cos x cos x sin x sin x cos x = cos x(cos x 1) sin x sin x = sin x sin x cos x(2 sin = sin x 2 sin =2 sin x x 2 cos ( sin x cos x 2 x 2 x 2 ) cos x(2 sin 2 cos x sin 2 2 dy cos( x x) cos( x) lim ∴ dx x 0 x x x 2 sin( x ) sin( ) 2 2 = lim x 0 x x x sin( x ) sin( ) 2 2 = lim x x 0 2 x sin 2 x = lim sin( x ) lim x 0 2 x 0 x 2 x 2 x 2 ) ) = sin x -------------------------------------------------------------------------------------------------------------------- Part 8 Proce you conjecture in Part 6 by using the result of Part 5 or any other method. Solution: y cos x cos x sin( y sin( let u ( 2 2 2 x) x) x), theny sin u du dy 1, and , cos u dx du dy dy du : h' ( x ) dx du dx so: differentiating gives: cos u (1) = cos( 2 = sin x x) ---------------------------------------------------------------------------------------------------------------------Part9 By using your results of Part 5 and Part 7, determine the derivative of g(x) = tan x . Solution: y tan x sin x cos x let u sin x.so du cos x dx dv sin x dx du dv v u dy cos 2 x sin 2 x 1 dx 2 dx sec 2 x 2 2 dx v cos x cos x v cos x, so lim ( : x0 { sin x cos x 1 } 2 2 y dy ) sec 2 x x dx g ' ( x) sec 2 x ---------------------------------------------------------------------------------------------------------------------- Part 10 Find g‘(x) in Part 9 from first principles, showing clearly your reasoning. Solution: y tan x y y tan( x x) tan x tan x 1 tan x tan x d g ( x) lim tan( x x) tan( x) x 0 dx x tan x tan x tan x ∵ tan( x x) tan x = 1 tan x tan x = tan x tan x tan x tan 2 x tan x 1 tan x tan x = tan x tan 2 x tan x 1 tan x tan x tan x(1 tan 2 x) = 1 tan x tan x sec 2 x 1 tan 2 x ∴ = tan x sec 2 x 1 tan x tan x tan x sec 2 x d 1 ∴ g ( x) lim x 0 1 tan x tan x dx x sec 2 x tan x lim x 0 x x 0 1 tan x tan x = lim sec 2 x x 0 1 0 =1 lim 2 = sec x = 1 cos 2 x _____________________________________ THE END________________________________