Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Type I : Mathematical Investigation
DIFFERENTIATING TRIGONOMETRIC FUNCTIONS
This assignment will be assessed against all 6 criteria
_______________________________________________________________________________
Part 1
Below is a sector of radius r and angle . If
and tan .
You must clearly show your reasoning.
is very small, find expressions for sin , cos
r
r
Solution :
If the angle is very small, BC= BC = r
(1) from the triangle
BC .r
= .
r
AB
AC r
1
cos =
AB r
BC .r
tan =
= .
AC
r
sin =
(2) From further calculation:
sin =
BC .r
= .
r
AB
cos = 1 sin
2
1
2
1
2
= 1 (1 ) 1 2 ...
2
2
{this can be get from binomial theorem}
because is very small, so we can just calculate the first two term .
cos 1-
1 2
.
2
sin
sin
sin 1 sin 2 1 2
1
(1 2 ...)
2
2
2
2
tan = cos
2
1 sin
1
1
1 sin
{this is also get from binomial theorem}
because is very small, so we can just calculate the first two term .
tan
1 2
2 2 2 3
(1.)
2
2
1 2
1 2
2 2 2
---------------------------------------------------------------------------------------------------------------------Part 2
(i)
With the aid of your GDC, investigate the results of Part 1.
(ii)
Investigate also lim
0
sin
and lim
0
tan
.
Solution:
{in this question,press “STAT”,choose “Edit”,then show below}
(i)
{put numbers in L1( ),let L1 0 , put the formula sin(LI) in L2}
as the graph showing, when ,L1 0, L 2 L1 ,so 0, sin
{put the formula cos(L1) in L3}
as the graph showing, when ,L1 0, L3 1 ,so 0, cos 1 .
{put the formula tan(L1) in L4}
as the graph showing, when ,L1 0, L3 L1 so 0, tan
(ii)
{put the formula
sin L1
in L2}
L1
as the graph showing, when L1 0, L 2 1 ,so
lim
0
sin
=1
-----------------------------------------------------------------------------------------------------------------{put formula
tan L1
in L2}
L1
as the graph showing, when L1 0, L 2 1 , so lim
0
tan
=1
---------------------------------------------------------------------------------------------------------------------Part 3
Consider the right-angle triangle OTB containing the sector OAB of radius a.
By considering appropriate areas, show that 1
Hence determine the lim
sin
0
sin
cos
, clearly showing your reasoning.
Solution:
In AOB, AQ a sin ,
In BOT , BT a tan ,
By considering appropriate ares, we know:
area AOB area sec torAOB areaBOT
1
1
1
a 2 sin a 2 a 2 tan {from the formula of triangle(area =1/2 ah),and the
2
2
2
formula of sectors(area = 1/2 rl)}
sin tan
s i n
co
s
1
1 cos
sin sin
s i n
product by sin ,which is positive, as
1
sin
2
:
cos
0, cos 1, so 1
lim
0
sin
sin
1
=1
---------------------------------------------------------------------------------------------------------------------Part 4
Consider the function f(x) = sin x ,x [0, 2 ]. By investigating the gradient of this function ,
deduce f ’(x).
You may wish to draw appropriate graphs on your GDC.
Solution:
{in this question, should use “Y=” to enter the function, then “WINDOW” enter the range, and
“GRAPH” to draw the graphs, showing as below }
{as we known, the graph is like the graph of the function of y=cosx, so compare with the graph of
y=cosx}
as the graph showing, the graph of y=cosx is the same as the graph of f’(x), so f’(x)=cosx
------------------------------------------------------------------------------------------------------------------Part 5
Prove your conjecture in Part4 from first principles, showing clearly your reasoning.
Solution:
y sin x
dy
sin( x x) sin( x)
lim
dx x 0
x
2 cos( x
x
) sin(
x
2
2
= lim
x 0
x
x
x
cos( x ) sin( )
2
2
= lim
x
x 0
2
= lim cos( x
x 0
∵
lim cos( x
x
x 0
sin
lim
x 0
x
2
x
2
)
sin
) lim
x 0
x
2
x
2
) = cos x
2 1
x
2
dy
sin( x x) sin( x)
lim
∴ f ' ( x) =
dx x 0
x
= lim cos( x
x 0
x
2
sin
) lim
x 0
x
2
x
2
= cos x
---------------------------------------------------------------------------------------------------------------------Part 6
If h(x) = cos x, deduce h ‘(x)
Solution:
{in this question, should use “Y=” to enter the function, then “WINDOW” enter the range, and
“GRAPH” to draw the graphs, showing as below }
{As we known, the graph of the h’(x)is like the graph of the function of y=-sinx,so, compare with
the graph of y=-sinx}
as the graph showing, the graph of y=-sinx is the same as the graph of h’(x),so h’(x)= -sinx
Part 7
Prove your conjecture in part 6 from first principles, showing clearly your reasoning
Solution:
∴ h' ( x ) =
dy
cos( x x) cos( x)
lim
dx x 0
x
According to the double angle identify:
cos 1 2 sin 2
2
∴ cos( x x) cos x = cos x cos x sin x sin x cos x
= cos x(cos x 1) sin x sin x
= sin x sin x cos x(2 sin
= sin x 2 sin
=2 sin
x
x
2
cos
( sin x cos
x
2
x
2
x
2
)
cos x(2 sin 2
cos x sin
2
2
dy
cos( x x) cos( x)
lim
∴
dx x 0
x
x
x
2 sin( x ) sin( )
2
2
= lim
x 0
x
x
x
sin( x ) sin( )
2
2
= lim
x
x 0
2
x
sin 2
x
= lim sin( x ) lim
x 0
2 x 0 x
2
x
2
x
2
)
)
= sin x
--------------------------------------------------------------------------------------------------------------------
Part 8
Proce you conjecture in Part 6 by using the result of Part 5 or any other method.
Solution:
y cos x
cos x sin(
y sin(
let u (
2
2
2
x)
x)
x), theny sin u
du
dy
1, and ,
cos u
dx
du
dy dy du
: h' ( x )
dx du dx
so: differentiating gives:
cos u (1)
= cos(
2
= sin x
x)
---------------------------------------------------------------------------------------------------------------------Part9
By using your results of Part 5 and Part 7, determine the derivative of g(x) = tan x .
Solution:
y tan x
sin x
cos x
let
u sin x.so
du
cos x
dx
dv
sin x
dx
du
dv
v
u
dy
cos 2 x sin 2 x
1
dx 2 dx
sec 2 x
2
2
dx
v
cos x
cos x
v cos x, so
lim (
: x0
{ sin x cos x 1 }
2
2
y
dy
)
sec 2 x
x
dx
g ' ( x) sec 2 x
----------------------------------------------------------------------------------------------------------------------
Part 10
Find g‘(x) in Part 9 from first principles, showing clearly your reasoning.
Solution:
y tan x
y y tan( x x)
tan x tan x
1 tan x tan x
d
g ( x) lim tan( x x) tan( x)
x 0
dx
x
tan x tan x
tan x
∵ tan( x x) tan x =
1 tan x tan x
=
tan x tan x tan x tan 2 x tan x
1 tan x tan x
=
tan x tan 2 x tan x
1 tan x tan x
tan x(1 tan 2 x)
=
1 tan x tan x
sec 2 x 1 tan 2 x
∴ =
tan x sec 2 x
1 tan x tan x
tan x sec 2 x
d
1
∴
g ( x) lim
x 0 1 tan x tan x
dx
x
sec 2 x
tan x
lim
x 0 x x 0 1 tan x tan x
= lim
sec 2 x
x 0 1 0
=1 lim
2
= sec x
=
1
cos 2 x
_____________________________________ THE END________________________________