Download 1 - RPDP

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Algebra I 2008–2009 Semester 2 Assessment — Released
DRAFT
1. What is the x-coordinate of the point of
intersection for the two lines below?
4. How many solutions does the system
have?
y x2
4 x  2 y  
4x  4 y  8
6x  2 y  4
A. –2
A. no solution
B. 0
C.
8
3
B. one solution
5
4
C. two solutions
D. 2
D. infinitely many solutions
2. What is the y-coordinate of the point of
intersection for the two lines below?
5. Which point is in the solution set for the
system of inequalities x  y  1 and
y  2x  1 ?
x y9
A.
 2, 4
A. –6
B.
 1, 1
B. –3
C.
 0, 2
D.
 2, 2
x  6 y  12
C. 3
D. 6
3. How many solutions does the system
have?
 x  4 y  20
3 x  12 y  4
A. no solution
B. one solution
C. two solutions
D. infinitely many solutions
2008–2009
Clark County School District
1
Revised 07/22/2009
GO ON
Algebra I 2008–2009 Semester 2 Assessment — Released
DRAFT
6. Which system of inequalities is graphed
below?
8. A movie theater sells regular tickets (r)
for $12 each. Students receive
discounted tickets (d) for $9 each. One
evening the theater sold 834 tickets and
collected $9,258 in revenue. Which
system of linear equations can be used to
determine the number of student tickets
sold?
r  d  9258
A. 
12r  9d  834
r  d  9258
B. 
9r  12d  834
r  d  834
C. 
12r  9d  9258
y  3
A. 
 y  2 x  1
r  d  834
D. 
9r  12d  9258
y  3
B. 
 y  2 x  1
9. Evaluate  x 3  when x = 2.
2
y  3
C. 
 y  2 x  1
A. 12
y  3
D. 
 y  2 x  1
B. 16
C. 36
D. 64
7. Jason has 20 coins in nickels and
quarters. He has a total of $3.40 in
coins. How many quarters does Jason
have?
10. Determine the value of 32  3 .
A. 9
A. 10
B. 18
B. 12
C. 27
C. 13
D. 81
D. 18
2008–2009
Clark County School District
2
Revised 07/22/2009
GO ON
Algebra I 2008–2009 Semester 2 Assessment — Released
DRAFT
15. Evaluate the expression 20  2 5  .
11. What is 75,200,000 in scientific
notation?
A. −32
A. 7.52 105
B. 0
B. 75.2 105
C. 75.2 106
C.
1
32
D.
1
16
D. 7.52 107
12. Multiply:  2.0  106  3.3  102  . What
16. Evaluate the expression 53  54  5 .
is the product in scientific notation?
A. 66 105
A. 1
B. 6.6 104
B. 5
C. 0.66 103
C. 10
D. 6.6  10 12
D. 25
yt
13. If 4  y12 , what is the value of t?
y
17. Which statement about
193 is true?
A. It lies between 13 and 14.
A. 3
B. It lies between 14 and 15.
B. 8
C. It lies between 100 and 200.
C. 16
D. It lies between 169 and 196.
D. 48
14. Which expression is equivalent to
x
5
y 3 z  5 x 4 y 3  ?
3
A. 5x12 y 9 z
B. 5x17 y12 z
C. 125x 20 y 9 z
D. 125x17 y12 z
2008–2009
Clark County School District
3
Revised 07/22/2009
GO ON
Algebra I 2008–2009 Semester 2 Assessment — Released
DRAFT
18. Evaluate the radical expression 
A. 
1
2
B. 
5
10
C. 
D. 
21. Triangle ABC is a right triangle. Which
equation could be used to determine the
value of x?
25
.
100
A
15
x
1
2
C
B
7
1
4
A. x  72  152
B. x  152  72
19. Simplify the radical
40 .
C. x  7 2  15 2
D. x  15 2  7 2
A. 2 10
B. 2 20
22. Use the converse of the Pythagorean
Theorem to determine if the 3 numbers
could represent the sides of a right
triangle.
C. 4 10
D. 8 5
20. Simplify the radical
I. 5, 7, 9
90
.
2
II. 5, 12, 13
Which of these sets of 3 numbers could
represent the sides of a right triangle?
A. 3 5
B. 5 3
A. Neither I nor II
C. 3 15
B. I only
C. II only
D. 15 3
2008–2009
Clark County School District
D. Both I and II
4
Revised 07/22/2009
GO ON
Algebra I 2008–2009 Semester 2 Assessment — Released
DRAFT
23. Find the area of the rectangle. Give the
exact answer in simplest form.
25. Subtract the following polynomials:
4 y
2
 7 y  5   2 y2  5 y  3
A. 2 y 2  2 y  2
10
B. 2 y 2  12 y  8
C. 6 y 2  2 y  2
20
A.
30
B.
200
D. 6 y 2  12 y  8
26. Multiply the binomials  2 x  3 3 x  1 .
C. 2 50
A. 5 x 2  7 x  3
D. 10 2
B. 5 x 2  5 x  3
C. 6 x 2  7 x  3
24. Which expression represents the
perimeter of the triangle shown below?
x2 + 3
D. 6 x 2  5 x  3
4x + 1
27. Multiply the polynomials:
 x  5  2 x 2  3 x  4
2x2 – x + 4
A. 2 x3  7 x 2  11x  20
A. x 2  5 x
B. 2 x 3  7 x 2  19 x  20
B. x  3x  3
2
C. 2 x 3  13x 2  11x  20
C. 3x 2  5 x  6
D. 2 x 3  13x 2  19 x  20
D. 3x  3x  8
2
28. Expand the expression  3 x  5  .
2
A. 9 x 2  25
B. 9 x 2  25
C. 9 x 2  30 x  25
D. 9 x 2  30 x  25
2008–2009
Clark County School District
5
Revised 07/22/2009
GO ON
Algebra I 2008–2009 Semester 2 Assessment — Released
DRAFT
29. Which of the following is a factor of
5 x 2  23 x  12 ?
32. Find the vertex of the parabola:
y  2 x 2  12 x  7
A.
 5x  2 
5x  3
A.
B.
 6, 7 
 5x  4 
B.
C.
 3, 11
 5x  6
C.
D.
 3, 61
D.
 6, 151
30. The graph of y   x 2  x  12 has how
many x-intercepts?
33. What is the domain and range of the
function y  2 x 2  2 x  4 shown in the
graph below?
A. 12
B. 2
C. 1
D. 0
31. Which of the following are true
statements about the graph of
y   x2  8 x  4 ?
I. Opens Up
II. Opens Down
III. Axis of symmetry x = –4
IV. Axis of symmetry x = 4
A. Domain: all real numbers
Range: all real numbers
A. I and III only
B. I and IV only
B. Domain: 2  x  2
C. II and III only
Range: y  4.5
C. Domain: all real numbers
D. II and IV only
Range: y  4.5
D. Domain: 2  x  2
Range: all real numbers
2008–2009
Clark County School District
6
Revised 07/22/2009
GO ON
Algebra I 2008–2009 Semester 2 Assessment — Released
DRAFT
34. Which of the following is the correct use of the quadratic formula to find the solutions of the
equation 2 x 2  7 x  5 ?
7 

A. 


 7   4  2 5 7   7   4  2  5 
,

2  2
2  2

7 

B. 


 7 
2
2

2
 4  2  5  7 
,
2  2
 7 
2
 4  2  5  




2  2
 7 

C. 


 7   4  2  5 7   7   4  2 5 
,

2  2
2  2

 7 

D. 


 7   4  2  5 7   7   4  2  5 
,

2  2
2  2

2
2

2
2

35. What is the solution set for the following
equation?
37. Which of the following equations has
roots of –7 and 4?
x 2  10 x  9  0
A. {–9, –1}
B. {–9, 1}
A.
 x  7 x  4  0
B.
 x  7 x  4  0
C.
 x  7 x  4  0
D.
 x  7 x  4  0
C. {–1, 9}
D. {1, 9}
38. Solve the equation 4 x 2  25  0 .
36. What are the roots (solutions) of
x2  x  1  0 ?
A.
B.
1 
1 
5
A.  
2 

3, 1  3
 25 
B.  
4

5, 1  5
 1  5 1  5 
,
C. 

2 
 2
 5
C.  ,
 2
1  5 1  5 
,
D. 

2 
 2
 25 25 
D.  , 
 4 4
2008–2009
Clark County School District
7
Revised 07/22/2009
5

2
GO ON
Algebra I 2008–2009 Semester 2 Assessment — Released
DRAFT
39. Which of the following is the graph of
y   x2  6 x  2 ?
40. Which equation best represents the
following graph?
A.
B.
A. y  x 2  2 x  8
B. y  x 2  2 x  8
C. y  x 2  2 x  8
D. y  x 2  2 x  8
41. The area of a rectangular tabletop is
represented by x 2  5 x  24 . Which
pair of expressions could represent the
dimensions of the tabletop?
C.
D.
2008–2009
Clark County School District
A.
 x  6 ,  x  4
B.
 x  8  ,  x  3
C.
 x  12 ,  x  2
D.
 x  24 ,  x 1
8
Revised 07/22/2009
GO ON
Algebra I 2008–2009 Semester 2 Assessment — Released
DRAFT
42. Simplify the rational expression:
44. What is
x 2  7 x  12
2 x2  5 x  3
form?
x4
A.
2x 1
A.
3 x  18
x2
x  11
B.
2x  4
B.
3 x  18
2x  4
2x  7
3x  2
C.
3x  4
x2
x4
D.
2x  1
D.
3x  4
2x  4
C.
2 x  7 x  11
in simplest

x2
x2
45. Subtract the rational expressions:
43. Which answer shows a simplified form
of the expression below?
6
5

x3 x3
6 x3 2 x
 2
y
y
A.
1
6
B.
1
x3
A. 3x 2 y
B. 12x 2 y
C.
3x 4
y3
C.
x  33
 x  3 x  3
D.
12x 4
y3
D.
x  15
 x  3 x  3
46. For what value(s) of x is the rational
3 x 2  15 x
expression 2
undefined?
x  7 x  10
A. 0
B. –5 and –2
C. 0 and 5
D. 2 and 5
2008–2009
Clark County School District
9
Revised 07/22/2009
GO ON
Algebra I 2008–2009 Semester 2 Assessment — Released
47. Simplify the product:
x 2  3 x  x  2

x2  5 x  6
2x
A.
x2
2
B.
x x3
2
C.
x x 3
x 2
50. Which solution set represents the values
of x that satisfy the equation below?
2
x7
2

3
x2
A. {–5, –4}
B. {–7, –2}
C. {4, 5}
D. {2, 7}
x2  4x  4
D.
x2
48. 30% of 60 is what number?
A. 0.5
B. 1.8
C. 9
D. 18
49. Solve the equation below for x:
x  1 2x  1

3
15
A. 
4
3
B. 0
C.
4
3
D. 12
2008–2009
Clark County School District
10
Revised 07/22/2009
Algebra I 2008–2009 Semester 2 Assessment — Released
Free Response
1. Simplify the following expression. Justify each step with the applicable property of exponents.
Express your answer with no negative exponents.
32a 4b 2 3a 2b7

2a 3b3 2a 4
2. A rectangular patio has length f  x  feet and width g  x  feet, where f ( x)  2 x  5 and
g ( x)  x  1 :
g  x
f  x
A. If the patio’s perimeter is 60 feet, what is the value of x?
B. If the patio’s area is 9 feet2, what is the value of x?
2008–2009
Clark County School District
1
Revised 07/22/2009
GO ON
Algebra I 2008–2009 Semester 2 Assessment — Released
Free Response
3. Use the equation y  x2  6x  8 to answer the following questions:
A. Find the x-intercepts.
B. Find the vertex.
C. Sketch the graph.
D. State the domain and range.
2008–2009
Clark County School District
2
Revised 07/22/2009
Related documents