Download Supplementary Information

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
SUPPLEMENTARY INFORMATION
for
Phase transitions in the complex plane of physical parameters
Bo-Bo Wei, Shao-Wen Chen, Hoi-Chun Po & Ren-Bao Liu*
Department of Physics, Centre for Quantum Coherence, and Institute of Theoretical
Physics, The Chinese University of Hong Kong, Shatin, New Territories, China
*[email protected]
I. Full Methods and Supplementary Equations
A. Exact solution and Lee-Yang zeros of the1D Ising model
The Hamiltonian of the 1D Ising model at finite external magnetic field is
H  h     J  j j 1  h j .
N
(S1)
j 1
The partition function can be exactly obtained by the transfer matrix method as


Z  e N  J  cosh(  h)  sinh 2 (  h)  e 4  J

 
N
 cosh(  h)  sinh 2 (  h)  e 4  J

N

 .
(S2)
With z  exp  2 h  and x  exp  2 J  , the partition function is written as
2


1

z


N (  J  h) 1  z
2


Z e
 

x
z

 2

 2 


N
 
  1 z 
  2
1  
  1 z
  2 
 
N
2
 
 1 z 
2


 x z  

 2 
 .
2
1

z


2  

 x z  
 2 
 
(S3)
Therefore the Lee-Yang zeros are given by
1 z
 1 z 
2
 
 x z
2
 2 
2
1 z
 1 z 
2
 
 x z
2
 2 
2
 eikn ,
(S4)
1
where kn   (2n  1) / N , n  1, 2,
, N . After solving the above algebraic equation of z,
the Lee-Yang zeros for ferromagnetic coupling ( J  0 ) are
zn  cos  n  i sin  n
cos  n   x 2  (1  x 2 ) cos kn ,
(S5)
sin  n   (1  x 2 )[sin 2 kn  x 2 (1  cos kn ) 2 ].
For anti-ferromagnetic phase, J  0 ,
zn   x2  (1  x2 )cos kn  ( x2  1)[sin 2 kn  x2 (1  cos kn )2 ].
(S6)
For non-interacting case, J  0 ,
zn  1.
(S7)
B. 2D Ising model in a finite field
The Hamiltonian of the 2D square lattice Ising model with a finite magnetic field is
H   J  i j  h  j
i, j
(S8)
j
The 2D square lattice Ising model was solved exactly by Onsager in the zero field. For
non-zero field, there is no exact solution, but one can map the 2D classical spin model
to a 1D quantum spin model by the transfer matrix method:
  J  i1, j1 i , j i , j1   J  i1, j1 i , j i1, j   h  i1, j1 i , j 
Z (  , h)  Tr e



M ,N
=

 j , j 
M ,N
M ,N
C11 ' D1 ' 2  C2 2 ' D2 ' 3 
CM M ' DM ' 1 
(S9)
 Tr[(CD) M ],
where
C '  e
J
 j1  ( j )  '( j 1)   h  j1  '( j )
N
N
  ' and D '  e
J
 j1  ( j )  '( j )
N
 e Js1s1 e  Js2 s2
'
'
e  JsN sN .
'
Therefore, evaluation of the partition function of the 2D Ising model amounts to
solution of a 1D quantum spin chain:
2
Z (  , h)=Tr[(CD) M ],
C  exp   J  j 1 zj  zj 1   h j 1 zj  ,


D  (e  J  e   J  1x )(e  J  e   J  2x ) (e  J  e   J  Nx )
N
N
(S10)
N
 [2sinh(2 K )]N /2 exp  K *  j 1 xj  .


C. Exact RG flow equations for 1D Ising model
Denoting the dimensionless parameters K0   J and h0   h for the Hamiltonian in
equation (S1), one can evaluate the partition function as [12]

 N

Z ( J , h; N )  Tr exp    K 0 j j 1  h0 j   
 j 1
 

 N /2 
h

 
 Tr     exp  K 0 ( j j 1   j 1 j  2 )  0 ( j  2 j 1   j  2 )   

2

  
 j even   j1  1
 N /2
h


 Tr   exp  K1 j j  2  1  j   j  2   G1  
2


 j even
NG1 / 2
e
Z ( K1 , h1 ; N / 2),
(S11)
where we have assumed periodic boundary condition and N to be even for simplicity.
This gives the RG flow equations
K1 
1  cosh  2 K 0  h0  cosh  2 K 0  h0  
ln 

4 
cosh 2  h0 

1  cosh  2 K 0  h0  
h1  h0  ln 
; &
2  cosh  2 K 0  h0  
1
G1  ln 16 cosh 2  h0  cosh  2 K 0  h0  cosh  2 K 0  h0   .
4
(S12)
D. Approximate RG flow equations for 2D Ising model
Denoting the dimensionless parameters K0   J and h0   h for the Hamiltonian in
equation (S8). The partition function of 2D Ising model can be evaluated
3


N
N
N
Z (  , h)  Tr exp K 0  i , j 1 i , j i , j 1  K 0  i , j 1 i , j i 1, j  h0  j 1 i , j 


e
 NG1 /2



h1  p  p  K1  nn  p q


 ,
Tr exp

  K
   K 3  pqr  p q r K 4  pqrs  p q r s  

 2  nnn p q

(S13)
where nn denotes nearest neighbor spins and nnn denotes next nearest neighbor spins in
the renormalized lattice. The renormalized parameters are
1  cosh  4 K 0  h0  cosh  4 K 0  h0  
K1  ln 
 ,
8 
cosh 2  h0 

K2 
1  cosh  4 K 0  h0  cosh  4 K 0  h0  
ln 
 ,
16 
cosh 2  h0 

2
1  cosh  4 K 0  h0  cosh  2 K 0  h0  
K3  ln 
,
16  cosh  4 K 0  h0  cosh 2  2 K 0  h0  
(S14)
6
1  cosh  4 K 0  h0  cosh  4 K 0  h0  cosh  h0  
K 4  ln 
 ,
16 
cosh 4  2 K 0  h0  cosh 4  2 K 0  h0 

2
1  cosh  4 K 0  h0  cosh  2 K 0  h0  
h1  h0  ln 
.
4  cosh  4 K 0  h0  cosh 2  2 K 0  h0  
The RG equations are not closed as new parameters K2 , K3 , K4 emerge. It is necessary
to make some approximation to make the RG equations close. A truncation scheme [13]
is obtained by correcting the theory in an approximate way for the presence of the term
K2 , K3 , K4 . Since both K 2 and K 4 are positive, the emergent interaction associated
with them have the effect of increasing the alignment of spins. Hence a reasonable
approximation is to drop K2 , K3 , K4 but simultaneously increase K1 to a new value
so that the new alignment tendency remains the same. Thus we have the approximate
RG equations for 2D Ising model,
K1 
3  cosh  4 K 0  h0  cosh  4 K 0  h0  
ln 
 ,
16 
cosh 2  h0 

2
i  cosh  4 K 0  h0  cosh  2 K 0  h0  
h1  h0  ln 
.
4  cosh  4 K 0  h0  cosh 2  2 K 0  h0  
(S15)
4
E. Exact solution and Lee-Yang zeros of the one-dimensional transverse field Ising
model.
The Hamiltonian of the one-dimensional transverse-field Ising model is
H  1 H1  2 H 2 ,
N
N
j 1
j 1
H1    xj  xj 1 , H 2    zj ,
(S16)
which can be exactly solved [14]. By applying Jordan-Wigner transformation, Fourier
transformation and Bogoliubov transformation, the Hamiltonian is transformed to be a
free-fermion one as
H  1    k   bk†bk  1 2 ,
(S17)
k
with energy dispersion
2

 
 (k )  2  cos k  2   sin 2 k .
1 

(S18)
Therefore, at temperature T, the positions of the zeros of the partition function

Z  Tr e   H

are decided by
exp   1  k  2  exp  1  k  2  0,
(S19)
i.e.
2

 
21  cos k  2   sin 2 k  i  2n  1  ,
1 

(S20)
with n being an integer.
F. Physical realizations for the time-domain measurement.
The time-domain measurement may be implemented by coupling the system to a probe
spin through the probe-system coupling H SB     H  (t )     H  (t )
( S z       ) and measuring the probe spin coherence. If we initialize the
5
probe spin in a superposition state    and the system in a thermal equilibrium
state described by the density matrix,   exp   H  / Tr[exp   H ] , the coherence
function of the quantum probe is,
Sx  i S y 
Tr[e
i ( H  H )t   H i ( H  H )t
e e
Tr[e  H ]
]
,
(S21)
(1). If [ H I , H ]  0 , the time-domain measurement can be reduced to
L  t   Z 1Tr exp    H  exp  iH I t   , which can be implemented by probe spin
decoherence with a time-independent probe-bath coupling, i.e. H    H   H I / 2 .
(2). If [ H I , H ]  0,[[ H I , H ], H ] [[ H I, H], H I] 0 , the time-domain measurement can
be written as
L t  
Tr exp    H  iH I t  
Tr exp    H  

Tr exp    H / 2  iH I t / 2  exp    H / 2  iH I t / 2  

Tr ei t [ H , H I ]/4 e iH I t /2 e   H /2 e   H /2 e iH I t /2 e i t [ H , H I ]/4 

Tr exp  iH I t / 2  exp    H  exp  iH I t / 2  
Tr exp    H  
(S22)
Tr e   H 
Tr exp    H  
.
Comparing with equation (S21), we can implement the time-domain measurement by
probe spin decoherence with a time-independent probe-bath coupling
H  H I / 2  H & H  H I / 2  H .
(3). If [ H I , H ]  0,[ H , H I ]  isH I , with s a real number, the time-domain measurement
can be written as
6
L t  

Tr exp    H  iH I t  
Tr exp    H  
Tr exp    H / 2  iH I t / 2  exp    H / 2  iH I t / 2  
Tr exp    H  
Tr e  ( e
 

is
1) H I t /2 s   H /2   H /2  (1 e  is ) H I t /2 s
e
e
e
(S23)


Tr e   H 
Tr  exp( it sin( s) H I / 2 s) exp(   H ) exp( it sin( s ) H I / 2 s ) 
Tr exp    H  
.
Comparing with equation (S21), we can implement the time-domain measurement by
probe spin decoherence with a time-independent probe-bath coupling
H   sin( s) H I / 2s  H & H    sin( s) H I / 2s  H .
(4). In the more general cases where [ H I , H ]  0 , the time-domain measurement in

equation(1) of the main text can be written as L  t   Tr e   H e  itH I  / Tr e   H  , where


 
e2  H   T exp  
 2

1
1

 
H  u  du  T exp  

 2

1
1

H  u  du  ,

exp  itH I   exp   H  exp   H  itH I  , H  u   exp  iutH I  H exp  iutH I  and
T and T are the time-ordering and anti-ordering operators, respectively. If one
initializes the bath in a canonical state   exp   H  /Tr[exp   H ] , the
time-domain measurement can be implemented by probe spin decoherence with a
probe-bath coupling H  H I  / 2  H  & H   H I  / 2  H  up to a normalization
factor
L t  
Tr exp    H  iH I t  
Tr exp    H  

Tr e  H eitH I  Tr e  H  
 
.
 
 H 
 H

Tr e
Tr e 
(S24)
7
Related documents