Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
食微期中作業 1. 2. 98334018碩ㄧ洪偉誠 Adriao, A., M. Vieira, I. Fernandes, M. Barbosa, M. Sol, R. P. Tenreiro, L. Chambel, B. Barata, I. Zilhao, G. Shama, S. Perni, S. J. Jordan, P. W. Andrew, and M. L. Faleiro. 2008. Marked intra-strain variation in response of Listeria monocytogenes dairy isolates to acid or salt stress and the effect of acid or salt adaptation on adherence to abiotic surfaces. Int. J. Food Microbiol. 123:142-150. Angelidis, A. S., and G. M. Smith. 2003. Three transporters mediate uptake of glycine betaine and carnitine by Listeria monocytogenes in response to hyperosmotic stress. Appl. Environ. Microbiol. 69:1013-1022. 3. Angelidis, A. S., and G. M. Smith. 2003. Role of the glycine betaine and carnitine transporters in adaptation of Listeria monocytogenes to chill stress in 4. defined medium. Appl. Environ. Microbiol. 69:7492-7498. Badaoui, N. M., M. Chikindas, and T. J. Montville. 2007. Changes in Listeria monocytogenes membrane fluidity in response to temperature stress. Appl. 5. Environ. Microbiol. 73:6429-6435. Barker, C., and S. F. Park. 2001. Sensitization of Listeria monocytogenes to low pH, organic acids, and osmotic stress by ethanol. Appl. Environ. Microbiol. 6. 67:1594-1600. Bayles, D. O., B. A. Annous, and B. J. Wilkinson. 1996. Cold stress proteins induced in Listeria monocytogenes in response to temperature downshock and 7. growth at low temperatures. Appl. Environ. Microbiol. 62:1116-1119. Begley, M., C. G. Gahan, and C. Hill. 2002. Bile stress response in Listeria monocytogenes LO28: adaptation, cross-protection, and identification of genetic loci involved in bile resistance. Appl. Environ. Microbiol. 68:6005-6012. 8. Begley, M., C. Hill, and C. G. Gahan. 2003. Identification and disruption of btlA, a locus involved in bile tolerance and general stress resistance in Listeria monocytogenes. FEMS Microbiol. Lett. 218:31-38. 9. Bigot, A., E. Botton, I. Dubail, and A. Charbit. 2006. A homolog of Bacillus subtilis trigger factor in Listeria monocytogenes is involved in stress tolerance and bacterial virulence. Appl. Environ. Microbiol. 72:6623-6631. 10. Cao, L., and D. A. Lawrence. 2002. Suppression of host resistance to Listeria monocytogenes by acute cold/restraint stress: lack of direct IL-6 involvement. J. Neuroimmunol. 133:132-143. 11. Cao, L., C. A. Hudson, and D. A. Lawrence. 2003. Acute cold/restraint stress inhibits host resistance to Listeria monocytogenes via beta1-adrenergic receptors. Brain Behav. Immun. 17:121-133. 12. Cao, L., N. M. Filipov, and D. A. Lawrence. 2002. Sympathetic nervous system plays a major role in acute cold/restraint stress inhibition of host resistance to Listeria monocytogenes. J. Neuroimmunol. 125:94-102. 13. Cetin, M. S., C. Zhang, R. W. Hutkins, and A. K. Benson. 2004. Regulation of transcription of compatible solute transporters by the general stress sigma factor, sigmaB, in Listeria monocytogenes. J. Bacteriol. 186:794-802. 14. Chan, Y. C., K. J. Boor, and M. Wiedmann. 2007. SigmaB-dependent and sigmaB-independent mechanisms contribute to transcription of Listeria monocytogenes cold stress genes during cold shock and cold growth. Appl. Environ. Microbiol. 73:6019-6029. 15. Chastanet, A., I. Derre, S. Nair, and T. Msadek. 2004. clpB, a novel member of the Listeria monocytogenes CtsR regulon, is involved in virulence but not in general stress tolerance. J. Bacteriol. 186:1165-1174. 16. Chaturongakul, S., S. Raengpradub, M. Wiedmann, and K. J. Boor. 2008. Modulation of stress and virulence in Listeria monocytogenes. Trends Microbiol. 16:388-396. 17. Chaturongakul, S., and K. J. Boor. 2006. SigmaB activation under environmental and energy stress conditions in Listeria monocytogenes. Appl. Environ. Microbiol. 72:5197-5203. 18. Chaturongakul, S., and K. J. Boor. 2004. RsbT and RsbV contribute to sigmaB-dependent survival under environmental, energy, and intracellular stress conditions in Listeria monocytogenes. Appl. Environ. Microbiol. 70:5349-5356. 19. Chen, H., H. Neetoo, M. Ye, and R. D. Joerger. 2009. Differences in pressure tolerance of Listeria monocytogenes strains are not correlated with other stress tolerances and are not based on differences in CtsR. Food Microbiol. 26:404-408. 20. Chen, J., L. Jiang, Q. Chen, H. Zhao, X. Luo, X. Chen, and W. Fang. 2009. lmo0038 is involved in acid and heat stress responses and specific for Listeria monocytogenes lineages I and II, and Listeria ivanovii. Foodborne. Pathog. Dis. 6:365-376. 21. Cheroutre-Vialette, M., I. Lebert, M. Hebraud, J. C. Labadie, and A. Lebert. 1998. Effects of pH or a(w) stress on growth of Listeria monocytogenes. Int. J. Food Microbiol. 42:71-77. 22. Christiansen, J. K., M. H. Larsen, H. Ingmer, L. Sogaard-Andersen, and B. H. Kallipolitis. 2004. The RNA-binding protein Hfq of Listeria monocytogenes: role in stress tolerance and virulence. J. Bacteriol. 186:3355-3362. 23. Cotter, P. D., N. Emerson, C. G. Gahan, and C. Hill. 1999. Identification and disruption of lisRK, a genetic locus encoding a two-component signal transduction system involved in stress tolerance and virulence in Listeria monocytogenes. J. Bacteriol. 181:6840-6843. 24. Dupont, C., and J. C. Augustin. 2009. Influence of stress on single-cell lag time and growth probability for Listeria monocytogenes in half Fraser broth. Appl. Environ. Microbiol. 75:3069-3076. 25. Duche, O., F. Tremoulet, A. Namane, and J. Labadie. 2002. A proteomic analysis of the salt stress response of Listeria monocytogenes. FEMS Microbiol. Lett. 215:183-188. 26. Duche, O., F. Tremoulet, P. Glaser, and J. Labadie. 2002. Salt stress proteins induced in Listeria monocytogenes. Appl. Environ. Microbiol. 68:1491-1498. 27. Dutta, V., G. R. Huff, W. E. Huff, M. G. Johnson, R. Nannapaneni, and R. J. Sayler. 2008. The effects of stress on respiratory disease and transient colonization of turkeys with Listeria monocytogenes Scott A. Avian Dis. 52:581-589. 28. Dykes, G. A., and S. M. Moorhead. 2000. Survival of osmotic and acid stress by Listeria monocytogenes strains of clinical or meat origin. Int. J. Food Microbiol. 56:161-166. 29. Ercolini, D., V. Fusco, G. Blaiotta, F. Sarghini, and S. Coppola. 2005. Response of Escherichia coli O157:H7, Listeria monocytogenes, Salmonella typhimurium, and Staphylococcus aureus to the thermal stress occurring in model manufactures of Grana Padano cheese. J. Dairy Sci. 88:3818-3825. 30. Faleiro, M. L., P. W. Andrew, and D. Power. 2003. Stress response of Listeria monocytogenes isolated from cheese and other foods. Int. J. Food Microbiol. 84:207-216. 31. Fang, W., H. Siegumfeldt, B. B. Budde, and M. Jakobsen. 2004. Osmotic stress leads to decreased intracellular pH of Listeria monocytogenes as determined by fluorescence ratio-imaging microscopy. Appl. Environ. Microbiol. 70:3176-3179. 32. Ferreira, A., C. P. O'Byrne, and K. J. Boor. 2001. Role of sigma(B) in heat, ethanol, acid, and oxidative stress resistance and during carbon starvation in Listeria monocytogenes. Appl. Environ. Microbiol. 67:4454-4457. 33. Freire-Garabal, M., M. J. Nunez, J. C. Fernandez-Rial, M. Rey-Mendez, and A. Belmonte. 1993. Effects of buspirone on the resistance, development and passive transfer of immunity to Listeria monocytogenes in mice submitted to stress. Arch. Int. Pharmacodyn. Ther. 324:114-123. 34. Gahan, C. G., and C. Hill. 1999. The relationship between acid stress responses and virulence in Salmonella typhimurium and Listeria monocytogenes. Int. J. Food Microbiol. 50:93-100. 35. Gaillot, O., S. Bregenholt, F. Jaubert, J. P. Di Santo, and P. Berche. 2001. Stress-induced ClpP serine protease of Listeria monocytogenes is essential for induction of listeriolysin O-dependent protective immunity. Infect. Immun. 69:4938-4943. 36. Garner, M. R., K. E. James, M. C. Callahan, M. Wiedmann, and K. J. Boor. 2006. Exposure to salt and organic acids increases the ability of Listeria monocytogenes to invade Caco-2 cells but decreases its ability to survive gastric stress. Appl. Environ. Microbiol. 72:5384-5395. 37. Geng, T., B. K. Hahm, and A. K. Bhunia. 2006. Selective enrichment media affect the antibody-based detection of stress-exposed Listeria monocytogenes due to differential expression of antibody-reactive antigens identified by protein sequencing. J. Food Prot. 69:1879-1886. 38. Geng, T., K. P. Kim, R. Gomez, D. M. Sherman, R. Bashir, M. R. Ladisch, and A. K. Bhunia. 2003. Expression of cellular antigens of Listeria monocytogenes that react with monoclonal antibodies C11E9 and EM-7G1 under acid-, salt- or temperature-induced stress environments. J. Appl. Microbiol. 95:762-772. 39. Giotis, E. S., D. A. McDowell, I. S. Blair, and B. J. Wilkinson. 2007. Role of branched-chain fatty acids in pH stress tolerance in Listeria monocytogenes. Appl. Environ. Microbiol. 73:997-1001. 40. Giotis, E. S., I. S. Blair, and D. A. McDowell. 2007. Morphological changes in Listeria monocytogenes subjected to sublethal alkaline stress. Int. J. Food Microbiol. 120:250-258. 41. Giotis, E. S., M. Julotok, B. J. Wilkinson, I. S. Blair, and D. A. McDowell. 2008. Role of sigma B factor in the alkaline tolerance response of Listeria monocytogenes 10403S and cross-protection against subsequent ethanol and osmotic stress. J. Food Prot. 71:1481-1485. 42. Gorski, L., D. Flaherty, and J. M. Duhe. 2008. Comparison of the stress response of Listeria monocytogenes strains with sprout colonization. J. Food Prot. 71:1556-1562. 43. Guillier, L., P. Pardon, and J. C. Augustin. 2005. Influence of stress on individual lag time distributions of Listeria monocytogenes. Appl. Environ. Microbiol. 71:2940-2948. 44. Hanawa, T., M. Fukuda, H. Kawakami, H. Hirano, S. Kamiya, and T. Yamamoto. 1999. The Listeria monocytogenes DnaK chaperone is required for stress tolerance and efficient phagocytosis with macrophages. Cell Stress. Chaperones. 4:118-128. 45. Jakob, W. 1967. Further experimental studies on the pathogenesis of cerebral listeriosis of the sheep. II. The course of the experimental infection with Listeria monocytogenes under various stress conditions. Arch. Exp. Veterinarmed. 21:675-684. 46. Jiang, L., I. Olesen, T. Andersen, W. Fang, and L. Jespersen. 2009. Survival of Listeria monocytogenes in Simulated Gastrointestinal System and Transcriptional Profiling of Stress- and Adhesion-Related Genes. Foodborne. Pathog. Dis. 47. Kallipolitis, B. H., and H. Ingmer. 2001. Listeria monocytogenes response regulators important for stress tolerance and pathogenesis. FEMS Microbiol. Lett. 204:111-115. 48. Karatzas, K. A., J. A. Wouters, C. G. Gahan, C. Hill, T. Abee, and M. H. Bennik. 2003. The CtsR regulator of Listeria monocytogenes contains a variant glycine repeat region that affects piezotolerance, stress resistance, motility and virulence. Mol. Microbiol. 49:1227-1238. 49. Kastbjerg, V. G., D. S. Nielsen, N. Arneborg, and L. Gram. 2009. Response of Listeria monocytogenes to Disinfection Stress at the Single-Cell and Population Levels as Monitored by Intracellular pH measurements and viable-cell counts. Appl. Environ. Microbiol. 75:4550-4556. 50. Kazmierczak, M. J., M. Wiedmann, and K. J. Boor. 2006. Contributions of Listeria monocytogenes sigmaB and PrfA to expression of virulence and stress response genes during extra- and intracellular growth. Microbiology 152:1827-1838. 51. Kazmierczak, M. J., S. C. Mithoe, K. J. Boor, and M. Wiedmann. 2003. Listeria monocytogenes sigma B regulates stress response and virulence functions. J. Bacteriol. 185:5722-5734. 52. Keskinen, L. A., E. C. Todd, and E. T. Ryser. 2008. Impact of bacterial stress and biofilm-forming ability on transfer of surface-dried Listeria monocytogenes during slicing of delicatessen meats. Int. J. Food Microbiol. 127:298-304. 53. Kim, S. H., L. Gorski, J. Reynolds, E. Orozco, S. Fielding, Y. H. Park, and M. K. Borucki. 2006. Role of uvrA in the growth and survival of Listeria monocytogenes under UV radiation and acid and bile stress. J. Food Prot. 69:3031-3036. 54. Koutsoumanis, K. P., and J. N. Sofos. 2004. Comparative acid stress response of Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella typhimurium after habituation at different pH conditions. Lett. Appl. Microbiol. 38:321-326. 55. Lianou, A., J. D. Stopforth, Y. Yoon, M. Wiedmann, and J. N. Sofos. 2006. Growth and stress resistance variation in culture broth among Listeria monocytogenes strains of various serotypes and origins. J. Food Prot. 69:2640-2647. 56. Masters, C. I., J. A. Shallcross, and B. M. Mackey. 1994. Effect of stress treatments on the detection of Listeria monocytogenes and enterotoxigenic Escherichia coli by the polymerase chain reaction. J. Appl. Bacteriol. 77:73-79. 57. McKinney, J. M., R. C. Williams, G. D. Boardman, J. D. Eifert, and S. S. Sumner. 2009. Effect of acid stress, antibiotic resistance, and heat shock on the resistance of Listeria monocytogenes to UV light when suspended in distilled water and fresh brine. J. Food Prot. 72:1634-1640. 58. Miller, E. S., R. A. Bates, D. A. Koebel, B. B. Fuchs, and G. Sonnenfeld. 1998. 2-deoxy-D-glucose-induced metabolic stress enhances resistance to Listeria monocytogenes infection in mice. Physiol Behav. 65:535-543. 59. Moorhead, S. M., and G. A. Dykes. 2004. Influence of the sigB gene on the cold stress survival and subsequent recovery of two Listeria monocytogenes serotypes. Int. J. Food Microbiol. 91:63-72. 60. Moorhead, S. M., and G. A. Dykes. 2003. The role of the sigB gene in the general stress response of Listeria monocytogenes varies between a strain of serotype 1/2a and a strain of serotype 4c. Curr. Microbiol. 46:461-466. 61. Neunlist, M. R., M. Federighi, M. Laroche, D. Sohier, G. Delattre, C. Jacquet, and N. E. Chihib. 2005. Cellular lipid fatty acid pattern heterogeneity between reference and recent food isolates of Listeria monocytogenes as a response to cold stress. Antonie Van Leeuwenhoek 88:199-206. 62. Novak, J. S., and J. T. Yuan. 2003. Viability of Clostridium perfringens, Escherichia coli, and Listeria monocytogenes surviving mild heat or aqueous ozone treatment on beef followed by heat, alkali, or salt stress. J. Food Prot. 66:382-389. 63. O'Byrne, C. P.,and K. A. Karatzas. 2008. The role of sigma B (sigma B) in the stress adaptations of Listeria monocytogenes: overlaps between stress adaptation and virulence. Adv. Appl. Microbiol. 65:115-140. 64. Olesen, I., F. K. Vogensen, and L. Jespersen. 2009. Gene transcription and virulence potential of Listeria monocytogenes strains after exposure to acidic and NaCl stress. Foodborne. Pathog. Dis. 6:669-680. 65. Olsen, K. N., M. H. Larsen, C. G. Gahan, B. Kallipolitis, X. A. Wolf, R. Rea, C. Hill, and H. Ingmer. 2005. The Dps-like protein Fri of Listeria monocytogenes promotes stress tolerance and intracellular multiplication in macrophage-like cells. Microbiology 151:925-933. 66. Patchett, R. A., N. Watson, P. S. Fernandez, and R. G. Kroll. 1996. The effect of temperature and growth rate on the susceptibility of Listeria monocytogenes to environmental stress conditions. Lett. Appl. Microbiol. 22:121-124. 67. Perni, S., T. G. Aldsworth, S. J. Jordan, I. Fernandes, M. Barbosa, M. Sol, R. P. Tenreiro, L. Chambel, I. Zilhao, B. Barata, A. Adriao, F. M. Leonor, P. W. Andrew, and G. Shama. 2007. The resistance to detachment of dairy strains of Listeria monocytogenes from stainless steel by shear stress is related to the fluid dynamic characteristics of the location of isolation. Int. J. Food Microbiol. 116:384-390. 68. Petro, T. M., and R. R. Watson. 1982. Dietary stress and development of resistance ot Listeria monocytogenes in mice. J. Nutr. 112:1498-1505. 69. Phan-Thanh, L., and L. Jansch. 2006. Elucidation of mechanisms of acid stress in Listeria monocytogenes by proteomic analysis. Methods Biochem. Anal. 49:75-88. 70. Phan-Thanh, L., and T. Gormon. 1997. Stress proteins in Listeria monocytogenes. Electrophoresis 18:1464-1471. 71. Raengpradub, S., M. Wiedmann, and K. J. Boor. 2008. Comparative analysis of the sigma B-dependent stress responses in Listeria monocytogenes and Listeria innocua strains exposed to selected stress conditions. Appl. Environ. Microbiol. 74:158-171. 72. Reichert-Schwillinsky, F., C. Pin, M. Dzieciol, M. Wagner, and I. Hein. 2009. Stress- and growth rate-related differences between plate count and real-time PCR data during growth of Listeria monocytogenes. Appl. Environ. Microbiol. 75:2132-2138. 73. Ripio, M. T., J. A. Vazquez-Boland, Y. Vega, S. Nair, and P. Berche. 1998. Evidence for expressional crosstalk between the central virulence regulator PrfA and the stress response mediator ClpC in Listeria monocytogenes. FEMS Microbiol. Lett. 158:45-50. 74. Ritz, M., M. F. Pilet, F. Jugiau, F. Rama, and M. Federighi. 2006. Inactivation of Salmonella Typhimurium and Listeria monocytogenes using high-pressure treatments: destruction or sublethal stress? Lett. Appl. Microbiol. 42:357-362. 75. Rouquette, C., C. C. de, S. Nair, and P. Berche. 1998. The ClpC ATPase of Listeria monocytogenes is a general stress protein required for virulence and promoting early bacterial escape from the phagosome of macrophages. Mol. Microbiol. 27:1235-1245. 76. Rouquette, C., M. T. Ripio, E. Pellegrini, J. M. Bolla, R. I. Tascon, J. A. Vazquez-Boland, and P. Berche. 1996. Identification of a ClpC ATPase required for stress tolerance and in vivo survival of Listeria monocytogenes. Mol. Microbiol. 21:977-987. 77. Ryan, E. M., C. G. Gahan, and C. Hill. 2008. A significant role for Sigma B in the detergent stress response of Listeria monocytogenes. Lett. Appl. Microbiol. 46:148-154. 78. Ryan, S., C. Hill, and C. G. Gahan. 2008. Acid stress responses in Listeria monocytogenes. Adv. Appl. Microbiol. 65:67-91. 79. Schmid, B., J. Klumpp, E. Raimann, M. J. Loessner, R. Stephan, and T. Tasara. 2009. Role of cold shock proteins in growth of Listeria monocytogenes under cold and osmotic stress conditions. Appl. Environ. Microbiol. 75:1621-1627. 80. Schwan, W. R., and W. Goebel. 1994. Host cell responses to Listeria monocytogenes infection include differential transcription of host stress genes involved in signal transduction. Proc. Natl. Acad. Sci. U. S. A 91:6428-6432. 81. Severino, P., O. Dussurget, R. Z. Vencio, E. Dumas, P. Garrido, G. Padilla, P. Piveteau, J. P. Lemaitre, F. Kunst, P. Glaser, and C. Buchrieser. 2007. Comparative transcriptome analysis of Listeria monocytogenes strains of the two major lineages reveals differences in virulence, cell wall, and stress response. Appl. Environ. Microbiol. 73:6078-6088. 82. Shabala, L., B. Budde, T. Ross, H. Siegumfeldt, M. Jakobsen, and T. McMeekin. 2002. Responses of Listeria monocytogenes to acid stress and glucose availability revealed by a novel combination of fluorescence microscopy and microelectrode ion-selective techniques. Appl. Environ. Microbiol. 68:1794-1802. 83. Shabala, L., B. Budde, T. Ross, H. Siegumfeldt, and T. McMeekin. 2002. Responses of Listeria monocytogenes to acid stress and glucose availability monitored by measurements of intracellular pH and viable counts. Int. J. Food Microbiol. 75:89-97. 84. Smoot, L. M., and M. D. Pierson . 1998. Influence of environmental stress on the kinetics and strength of attachment of Listeria monocytogenes Scott A to Buna-N rubber and stainless steel. J. Food Prot. 61:1286-1292. 85. Smoot, L. M., and M. D. Pierson . 1998. Effect of environmental stress on the ability of Listeria monocytogenes Scott A to attach to food contact surfaces. J. Food Prot. 61:1293-1298. 86. Sokolovic, Z., A. Fuchs, and W. Goebel. 1990. Synthesis of species-specific stress proteins by virulent strains of Listeria monocytogenes. Infect. Immun. 58:3582-3587. 87. Sokolovic, Z., J. Riedel, M. Wuenscher, and W. Goebel. 1993. Surface-associated, PrfA-regulated proteins of Listeria monocytogenes synthesized under stress conditions. Mol. Microbiol. 8:219-227. 88. Stack, H. M., R. D. Sleator, M. Bowers, C. Hill, and C. G. Gahan. 2005. Role for HtrA in stress induction and virulence potential in Listeria monocytogenes. Appl. Environ. Microbiol. 71:4241-4247. 89. Sue, D., D. Fink, M. Wiedmann, and K. J. Boor. 2004. sigmaB-dependent gene induction and expression in Listeria monocytogenes during osmotic and acid stress conditions simulating the intestinal environment. Microbiology 150:3843-3855. 90. Tasara, T., and R. Stephan. 2006. Cold stress tolerance of Listeria monocytogenes: A review of molecular adaptive mechanisms and food safety implications. J. Food Prot. 69:1473-1484. 91. Tasara, T., and R. Stephan. 2007. Evaluation of housekeeping genes in Listeria monocytogenes as potential internal control references for normalizing mRNA expression levels in stress adaptation models using real-time PCR. FEMS Microbiol. Lett. 269:265-272. 92. Van, d., V, S. S. van, D. Molenaar, W. M. de Vos, T. Abee, and M. H. Wells-Bennik. 2009. The SOS response of Listeria monocytogenes is involved in stress resistance and mutagenesis. Microbiology. 93. Wemekamp-Kamphuis, H. H., J. A. Wouters, P. P. de Leeuw, T. Hain, T. Chakraborty, and T. Abee. 2004. Identification of sigma factor sigma B-controlled genes and their impact on acid stress, high hydrostatic pressure, and freeze survival in Listeria monocytogenes EGD-e. Appl. Environ. Microbiol. 70:3457-3466. 94. Werbrouck, H., A. Vermeulen, C. E. Van, W. Messens, L. Herman, F. Devlieghere, and M. Uyttendaele. 2009. Influence of acid stress on survival, expression of virulence genes and invasion capacity into Caco-2 cells of Listeria monocytogenes strains of different origins. Int. J. Food Microbiol. 134:140-146. 95. Wiedmann, M., T. J. Arvik, R. J. Hurley, and K. J. Boor. 1998. General stress transcription factor sigmaB and its role in acid tolerance and virulence of Listeria monocytogenes. J. Bacteriol. 180:3650-3656. 96. Wilson, R. L., L. L. Brown, D. Kirkwood-Watts, T. K. Warren, S. A. Lund, D. S. King, K. F. Jones, and D. E. Hruby. 2006. Listeria monocytogenes 10403S HtrA is necessary for resistance to cellular stress and virulence. Infect. Immun. 74:765-768. 97. Wonderling, L. D., B. J. Wilkinson, and D. O. Bayles. 2004. The htrA (degP) gene of Listeria monocytogenes 10403S is essential for optimal growth under stress conditions. Appl. Environ. Microbiol. 70:1935-1943. 98. Yamaoka, Y., T. Kawakita, and K. Nomoto. 2000. Protective effect of a traditional Japanese medicine, Bu-zhong-yi-qi-tang (Japanese name: Hochu-ekki-to), on the restraint stress-induced susceptibility against Listeria monocytogenes. Immunopharmacology 48:35-42. 99. Yoon, K. S., C. N. Burnette, K. A. bou-Zeid, and R. C. Whiting. 2004. Control of growth and survival of Listeria monocytogenes on smoked salmon by combined potassium lactate and sodium diacetate and freezing stress during refrigeration and frozen storage. J. Food Prot. 67:2465-2471. 100. Zhang, D., K. Kishihara, B. Wang, K. Mizobe, C. Kubo, and K. Nomoto. 1998. Restraint stress-induced immunosuppression by inhibiting leukocyte migration and Th1 cytokine expression during the intraperitoneal infection of Listeria monocytogenes. J. Neuroimmunol. 92:139-151.