Download Adriao, A

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
食微期中作業
1.
2.
98334018碩ㄧ洪偉誠
Adriao, A., M. Vieira, I. Fernandes, M. Barbosa, M. Sol, R. P. Tenreiro, L.
Chambel, B. Barata, I. Zilhao, G. Shama, S. Perni, S. J. Jordan, P. W.
Andrew, and M. L. Faleiro. 2008. Marked intra-strain variation in response of
Listeria monocytogenes dairy isolates to acid or salt stress and the effect of acid
or salt adaptation on adherence to abiotic surfaces. Int. J. Food Microbiol.
123:142-150.
Angelidis, A. S., and G. M. Smith. 2003. Three transporters mediate uptake of
glycine betaine and carnitine by Listeria monocytogenes in response to
hyperosmotic stress. Appl. Environ. Microbiol. 69:1013-1022.
3.
Angelidis, A. S., and G. M. Smith. 2003. Role of the glycine betaine and
carnitine transporters in adaptation of Listeria monocytogenes to chill stress in
4.
defined medium. Appl. Environ. Microbiol. 69:7492-7498.
Badaoui, N. M., M. Chikindas, and T. J. Montville. 2007. Changes in Listeria
monocytogenes membrane fluidity in response to temperature stress. Appl.
5.
Environ. Microbiol. 73:6429-6435.
Barker, C., and S. F. Park. 2001. Sensitization of Listeria monocytogenes to
low pH, organic acids, and osmotic stress by ethanol. Appl. Environ. Microbiol.
6.
67:1594-1600.
Bayles, D. O., B. A. Annous, and B. J. Wilkinson. 1996. Cold stress proteins
induced in Listeria monocytogenes in response to temperature downshock and
7.
growth at low temperatures. Appl. Environ. Microbiol. 62:1116-1119.
Begley, M., C. G. Gahan, and C. Hill. 2002. Bile stress response in Listeria
monocytogenes LO28: adaptation, cross-protection, and identification of genetic
loci involved in bile resistance. Appl. Environ. Microbiol. 68:6005-6012.
8.
Begley, M., C. Hill, and C. G. Gahan. 2003. Identification and disruption of
btlA, a locus involved in bile tolerance and general stress resistance in Listeria
monocytogenes. FEMS Microbiol. Lett. 218:31-38.
9.
Bigot, A., E. Botton, I. Dubail, and A. Charbit. 2006. A homolog of Bacillus
subtilis trigger factor in Listeria monocytogenes is involved in stress tolerance
and bacterial virulence. Appl. Environ. Microbiol. 72:6623-6631.
10. Cao, L., and D. A. Lawrence. 2002. Suppression of host resistance to Listeria
monocytogenes by acute cold/restraint stress: lack of direct IL-6 involvement. J.
Neuroimmunol. 133:132-143.
11. Cao, L., C. A. Hudson, and D. A. Lawrence. 2003. Acute cold/restraint stress
inhibits host resistance to Listeria monocytogenes via beta1-adrenergic receptors.
Brain Behav. Immun. 17:121-133.
12. Cao, L., N. M. Filipov, and D. A. Lawrence. 2002. Sympathetic nervous
system plays a major role in acute cold/restraint stress inhibition of host
resistance to Listeria monocytogenes. J. Neuroimmunol. 125:94-102.
13. Cetin, M. S., C. Zhang, R. W. Hutkins, and A. K. Benson. 2004. Regulation
of transcription of compatible solute transporters by the general stress sigma
factor, sigmaB, in Listeria monocytogenes. J. Bacteriol. 186:794-802.
14. Chan, Y. C., K. J. Boor, and M. Wiedmann. 2007. SigmaB-dependent and
sigmaB-independent mechanisms contribute to transcription of Listeria
monocytogenes cold stress genes during cold shock and cold growth. Appl.
Environ. Microbiol. 73:6019-6029.
15. Chastanet, A., I. Derre, S. Nair, and T. Msadek. 2004. clpB, a novel member
of the Listeria monocytogenes CtsR regulon, is involved in virulence but not in
general stress tolerance. J. Bacteriol. 186:1165-1174.
16. Chaturongakul, S., S. Raengpradub, M. Wiedmann, and K. J. Boor. 2008.
Modulation of stress and virulence in Listeria monocytogenes. Trends Microbiol.
16:388-396.
17. Chaturongakul, S., and K. J. Boor. 2006. SigmaB activation under
environmental and energy stress conditions in Listeria monocytogenes. Appl.
Environ. Microbiol. 72:5197-5203.
18. Chaturongakul, S., and K. J. Boor. 2004. RsbT and RsbV contribute to
sigmaB-dependent survival under environmental, energy, and intracellular stress
conditions in Listeria monocytogenes. Appl. Environ. Microbiol. 70:5349-5356.
19. Chen, H., H. Neetoo, M. Ye, and R. D. Joerger. 2009. Differences in pressure
tolerance of Listeria monocytogenes strains are not correlated with other stress
tolerances and are not based on differences in CtsR. Food Microbiol.
26:404-408.
20. Chen, J., L. Jiang, Q. Chen, H. Zhao, X. Luo, X. Chen, and W. Fang. 2009.
lmo0038 is involved in acid and heat stress responses and specific for Listeria
monocytogenes lineages I and II, and Listeria ivanovii. Foodborne. Pathog. Dis.
6:365-376.
21. Cheroutre-Vialette, M., I. Lebert, M. Hebraud, J. C. Labadie, and A. Lebert.
1998. Effects of pH or a(w) stress on growth of Listeria monocytogenes. Int. J.
Food Microbiol. 42:71-77.
22. Christiansen, J. K., M. H. Larsen, H. Ingmer, L. Sogaard-Andersen, and B.
H. Kallipolitis. 2004. The RNA-binding protein Hfq of Listeria monocytogenes:
role in stress tolerance and virulence. J. Bacteriol. 186:3355-3362.
23. Cotter, P. D., N. Emerson, C. G. Gahan, and C. Hill. 1999. Identification and
disruption of lisRK, a genetic locus encoding a two-component signal
transduction system involved in stress tolerance and virulence in Listeria
monocytogenes. J. Bacteriol. 181:6840-6843.
24. Dupont, C., and J. C. Augustin. 2009. Influence of stress on single-cell lag
time and growth probability for Listeria monocytogenes in half Fraser broth.
Appl. Environ. Microbiol. 75:3069-3076.
25. Duche, O., F. Tremoulet, A. Namane, and J. Labadie. 2002. A proteomic
analysis of the salt stress response of Listeria monocytogenes. FEMS Microbiol.
Lett. 215:183-188.
26. Duche, O., F. Tremoulet, P. Glaser, and J. Labadie. 2002. Salt stress proteins
induced in Listeria monocytogenes. Appl. Environ. Microbiol. 68:1491-1498.
27. Dutta, V., G. R. Huff, W. E. Huff, M. G. Johnson, R. Nannapaneni, and R. J.
Sayler. 2008. The effects of stress on respiratory disease and transient
colonization of turkeys with Listeria monocytogenes Scott A. Avian Dis.
52:581-589.
28. Dykes, G. A., and S. M. Moorhead. 2000. Survival of osmotic and acid stress
by Listeria monocytogenes strains of clinical or meat origin. Int. J. Food
Microbiol. 56:161-166.
29. Ercolini, D., V. Fusco, G. Blaiotta, F. Sarghini, and S. Coppola. 2005.
Response of Escherichia coli O157:H7, Listeria monocytogenes, Salmonella
typhimurium, and Staphylococcus aureus to the thermal stress occurring in
model manufactures of Grana Padano cheese. J. Dairy Sci. 88:3818-3825.
30. Faleiro, M. L., P. W. Andrew, and D. Power. 2003. Stress response of Listeria
monocytogenes isolated from cheese and other foods. Int. J. Food Microbiol.
84:207-216.
31. Fang, W., H. Siegumfeldt, B. B. Budde, and M. Jakobsen. 2004. Osmotic
stress leads to decreased intracellular pH of Listeria monocytogenes as
determined by fluorescence ratio-imaging microscopy. Appl. Environ. Microbiol.
70:3176-3179.
32. Ferreira, A., C. P. O'Byrne, and K. J. Boor. 2001. Role of sigma(B) in heat,
ethanol, acid, and oxidative stress resistance and during carbon starvation in
Listeria monocytogenes. Appl. Environ. Microbiol. 67:4454-4457.
33. Freire-Garabal, M., M. J. Nunez, J. C. Fernandez-Rial, M. Rey-Mendez,
and A. Belmonte. 1993. Effects of buspirone on the resistance, development and
passive transfer of immunity to Listeria monocytogenes in mice submitted to
stress. Arch. Int. Pharmacodyn. Ther. 324:114-123.
34. Gahan, C. G., and C. Hill. 1999. The relationship between acid stress responses
and virulence in Salmonella typhimurium and Listeria monocytogenes. Int. J.
Food Microbiol. 50:93-100.
35. Gaillot, O., S. Bregenholt, F. Jaubert, J. P. Di Santo, and P. Berche. 2001.
Stress-induced ClpP serine protease of Listeria monocytogenes is essential for
induction of listeriolysin O-dependent protective immunity. Infect. Immun.
69:4938-4943.
36. Garner, M. R., K. E. James, M. C. Callahan, M. Wiedmann, and K. J. Boor.
2006. Exposure to salt and organic acids increases the ability of Listeria
monocytogenes to invade Caco-2 cells but decreases its ability to survive gastric
stress. Appl. Environ. Microbiol. 72:5384-5395.
37. Geng, T., B. K. Hahm, and A. K. Bhunia. 2006. Selective enrichment media
affect the antibody-based detection of stress-exposed Listeria monocytogenes
due to differential expression of antibody-reactive antigens identified by protein
sequencing. J. Food Prot. 69:1879-1886.
38. Geng, T., K. P. Kim, R. Gomez, D. M. Sherman, R. Bashir, M. R. Ladisch,
and A. K. Bhunia. 2003. Expression of cellular antigens of Listeria
monocytogenes that react with monoclonal antibodies C11E9 and EM-7G1 under
acid-, salt- or temperature-induced stress environments. J. Appl. Microbiol.
95:762-772.
39. Giotis, E. S., D. A. McDowell, I. S. Blair, and B. J. Wilkinson. 2007. Role of
branched-chain fatty acids in pH stress tolerance in Listeria monocytogenes.
Appl. Environ. Microbiol. 73:997-1001.
40. Giotis, E. S., I. S. Blair, and D. A. McDowell. 2007. Morphological changes in
Listeria monocytogenes subjected to sublethal alkaline stress. Int. J. Food
Microbiol. 120:250-258.
41. Giotis, E. S., M. Julotok, B. J. Wilkinson, I. S. Blair, and D. A. McDowell.
2008. Role of sigma B factor in the alkaline tolerance response of Listeria
monocytogenes 10403S and cross-protection against subsequent ethanol and
osmotic stress. J. Food Prot. 71:1481-1485.
42. Gorski, L., D. Flaherty, and J. M. Duhe. 2008. Comparison of the stress
response of Listeria monocytogenes strains with sprout colonization. J. Food Prot.
71:1556-1562.
43. Guillier, L., P. Pardon, and J. C. Augustin. 2005. Influence of stress on
individual lag time distributions of Listeria monocytogenes. Appl. Environ.
Microbiol. 71:2940-2948.
44. Hanawa, T., M. Fukuda, H. Kawakami, H. Hirano, S. Kamiya, and T.
Yamamoto. 1999. The Listeria monocytogenes DnaK chaperone is required for
stress tolerance and efficient phagocytosis with macrophages. Cell Stress.
Chaperones. 4:118-128.
45. Jakob, W. 1967. Further experimental studies on the pathogenesis of cerebral
listeriosis of the sheep. II. The course of the experimental infection with Listeria
monocytogenes under various stress conditions. Arch. Exp. Veterinarmed.
21:675-684.
46. Jiang, L., I. Olesen, T. Andersen, W. Fang, and L. Jespersen. 2009. Survival
of Listeria monocytogenes in Simulated Gastrointestinal System and
Transcriptional Profiling of Stress- and Adhesion-Related Genes. Foodborne.
Pathog. Dis.
47. Kallipolitis, B. H., and H. Ingmer. 2001. Listeria monocytogenes response
regulators important for stress tolerance and pathogenesis. FEMS Microbiol. Lett.
204:111-115.
48. Karatzas, K. A., J. A. Wouters, C. G. Gahan, C. Hill, T. Abee, and M. H.
Bennik. 2003. The CtsR regulator of Listeria monocytogenes contains a variant
glycine repeat region that affects piezotolerance, stress resistance, motility and
virulence. Mol. Microbiol. 49:1227-1238.
49. Kastbjerg, V. G., D. S. Nielsen, N. Arneborg, and L. Gram. 2009. Response
of Listeria monocytogenes to Disinfection Stress at the Single-Cell and
Population Levels as Monitored by Intracellular pH measurements and
viable-cell counts. Appl. Environ. Microbiol. 75:4550-4556.
50. Kazmierczak, M. J., M. Wiedmann, and K. J. Boor. 2006. Contributions of
Listeria monocytogenes sigmaB and PrfA to expression of virulence and stress
response genes during extra- and intracellular growth. Microbiology
152:1827-1838.
51. Kazmierczak, M. J., S. C. Mithoe, K. J. Boor, and M. Wiedmann. 2003.
Listeria monocytogenes sigma B regulates stress response and virulence
functions. J. Bacteriol. 185:5722-5734.
52. Keskinen, L. A., E. C. Todd, and E. T. Ryser. 2008. Impact of bacterial stress
and biofilm-forming ability on transfer of surface-dried Listeria monocytogenes
during slicing of delicatessen meats. Int. J. Food Microbiol. 127:298-304.
53. Kim, S. H., L. Gorski, J. Reynolds, E. Orozco, S. Fielding, Y. H. Park, and
M. K. Borucki. 2006. Role of uvrA in the growth and survival of Listeria
monocytogenes under UV radiation and acid and bile stress. J. Food Prot.
69:3031-3036.
54. Koutsoumanis, K. P., and J. N. Sofos. 2004. Comparative acid stress response
of Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella
typhimurium after habituation at different pH conditions. Lett. Appl. Microbiol.
38:321-326.
55. Lianou, A., J. D. Stopforth, Y. Yoon, M. Wiedmann, and J. N. Sofos. 2006.
Growth and stress resistance variation in culture broth among Listeria
monocytogenes strains of various serotypes and origins. J. Food Prot.
69:2640-2647.
56. Masters, C. I., J. A. Shallcross, and B. M. Mackey. 1994. Effect of stress
treatments on the detection of Listeria monocytogenes and enterotoxigenic
Escherichia coli by the polymerase chain reaction. J. Appl. Bacteriol. 77:73-79.
57. McKinney, J. M., R. C. Williams, G. D. Boardman, J. D. Eifert, and S. S.
Sumner. 2009. Effect of acid stress, antibiotic resistance, and heat shock on the
resistance of Listeria monocytogenes to UV light when suspended in distilled
water and fresh brine. J. Food Prot. 72:1634-1640.
58. Miller, E. S., R. A. Bates, D. A. Koebel, B. B. Fuchs, and G. Sonnenfeld.
1998. 2-deoxy-D-glucose-induced metabolic stress enhances resistance to
Listeria monocytogenes infection in mice. Physiol Behav. 65:535-543.
59. Moorhead, S. M., and G. A. Dykes. 2004. Influence of the sigB gene on the
cold stress survival and subsequent recovery of two Listeria monocytogenes
serotypes. Int. J. Food Microbiol. 91:63-72.
60. Moorhead, S. M., and G. A. Dykes. 2003. The role of the sigB gene in the
general stress response of Listeria monocytogenes varies between a strain of
serotype 1/2a and a strain of serotype 4c. Curr. Microbiol. 46:461-466.
61. Neunlist, M. R., M. Federighi, M. Laroche, D. Sohier, G. Delattre, C.
Jacquet, and N. E. Chihib. 2005. Cellular lipid fatty acid pattern heterogeneity
between reference and recent food isolates of Listeria monocytogenes as a
response to cold stress. Antonie Van Leeuwenhoek 88:199-206.
62. Novak, J. S., and J. T. Yuan. 2003. Viability of Clostridium perfringens,
Escherichia coli, and Listeria monocytogenes surviving mild heat or aqueous
ozone treatment on beef followed by heat, alkali, or salt stress. J. Food Prot.
66:382-389.
63. O'Byrne, C. P.,and K. A. Karatzas. 2008. The role of sigma B (sigma B) in the
stress adaptations of Listeria monocytogenes: overlaps between stress adaptation
and virulence. Adv. Appl. Microbiol. 65:115-140.
64. Olesen, I., F. K. Vogensen, and L. Jespersen. 2009. Gene transcription and
virulence potential of Listeria monocytogenes strains after exposure to acidic and
NaCl stress. Foodborne. Pathog. Dis. 6:669-680.
65. Olsen, K. N., M. H. Larsen, C. G. Gahan, B. Kallipolitis, X. A. Wolf, R. Rea,
C. Hill, and H. Ingmer. 2005. The Dps-like protein Fri of Listeria
monocytogenes promotes stress tolerance and intracellular multiplication in
macrophage-like cells. Microbiology 151:925-933.
66. Patchett, R. A., N. Watson, P. S. Fernandez, and R. G. Kroll. 1996. The
effect of temperature and growth rate on the susceptibility of Listeria
monocytogenes to environmental stress conditions. Lett. Appl. Microbiol.
22:121-124.
67. Perni, S., T. G. Aldsworth, S. J. Jordan, I. Fernandes, M. Barbosa, M. Sol, R.
P. Tenreiro, L. Chambel, I. Zilhao, B. Barata, A. Adriao, F. M. Leonor, P.
W. Andrew, and G. Shama. 2007. The resistance to detachment of dairy strains
of Listeria monocytogenes from stainless steel by shear stress is related to the
fluid dynamic characteristics of the location of isolation. Int. J. Food Microbiol.
116:384-390.
68. Petro, T. M., and R. R. Watson. 1982. Dietary stress and development of
resistance ot Listeria monocytogenes in mice. J. Nutr. 112:1498-1505.
69. Phan-Thanh, L., and L. Jansch. 2006. Elucidation of mechanisms of acid
stress in Listeria monocytogenes by proteomic analysis. Methods Biochem. Anal.
49:75-88.
70. Phan-Thanh, L., and T. Gormon. 1997. Stress proteins in Listeria
monocytogenes. Electrophoresis 18:1464-1471.
71. Raengpradub, S., M. Wiedmann, and K. J. Boor. 2008. Comparative analysis
of the sigma B-dependent stress responses in Listeria monocytogenes and
Listeria innocua strains exposed to selected stress conditions. Appl. Environ.
Microbiol. 74:158-171.
72. Reichert-Schwillinsky, F., C. Pin, M. Dzieciol, M. Wagner, and I. Hein. 2009.
Stress- and growth rate-related differences between plate count and real-time
PCR data during growth of Listeria monocytogenes. Appl. Environ. Microbiol.
75:2132-2138.
73. Ripio, M. T., J. A. Vazquez-Boland, Y. Vega, S. Nair, and P. Berche. 1998.
Evidence for expressional crosstalk between the central virulence regulator PrfA
and the stress response mediator ClpC in Listeria monocytogenes. FEMS
Microbiol. Lett. 158:45-50.
74. Ritz, M., M. F. Pilet, F. Jugiau, F. Rama, and M. Federighi. 2006.
Inactivation of Salmonella Typhimurium and Listeria monocytogenes using
high-pressure treatments: destruction or sublethal stress? Lett. Appl. Microbiol.
42:357-362.
75. Rouquette, C., C. C. de, S. Nair, and P. Berche. 1998. The ClpC ATPase of
Listeria monocytogenes is a general stress protein required for virulence and
promoting early bacterial escape from the phagosome of macrophages. Mol.
Microbiol. 27:1235-1245.
76. Rouquette, C., M. T. Ripio, E. Pellegrini, J. M. Bolla, R. I. Tascon, J. A.
Vazquez-Boland, and P. Berche. 1996. Identification of a ClpC ATPase
required for stress tolerance and in vivo survival of Listeria monocytogenes. Mol.
Microbiol. 21:977-987.
77. Ryan, E. M., C. G. Gahan, and C. Hill. 2008. A significant role for Sigma B in
the detergent stress response of Listeria monocytogenes. Lett. Appl. Microbiol.
46:148-154.
78. Ryan, S., C. Hill, and C. G. Gahan. 2008. Acid stress responses in Listeria
monocytogenes. Adv. Appl. Microbiol. 65:67-91.
79. Schmid, B., J. Klumpp, E. Raimann, M. J. Loessner, R. Stephan, and T.
Tasara. 2009. Role of cold shock proteins in growth of Listeria monocytogenes
under cold and osmotic stress conditions. Appl. Environ. Microbiol.
75:1621-1627.
80. Schwan, W. R., and W. Goebel. 1994. Host cell responses to Listeria
monocytogenes infection include differential transcription of host stress genes
involved in signal transduction. Proc. Natl. Acad. Sci. U. S. A 91:6428-6432.
81. Severino, P., O. Dussurget, R. Z. Vencio, E. Dumas, P. Garrido, G. Padilla,
P. Piveteau, J. P. Lemaitre, F. Kunst, P. Glaser, and C. Buchrieser. 2007.
Comparative transcriptome analysis of Listeria monocytogenes strains of the two
major lineages reveals differences in virulence, cell wall, and stress response.
Appl. Environ. Microbiol. 73:6078-6088.
82. Shabala, L., B. Budde, T. Ross, H. Siegumfeldt, M. Jakobsen, and T.
McMeekin. 2002. Responses of Listeria monocytogenes to acid stress and
glucose availability revealed by a novel combination of fluorescence microscopy
and microelectrode ion-selective techniques. Appl. Environ. Microbiol.
68:1794-1802.
83. Shabala, L., B. Budde, T. Ross, H. Siegumfeldt, and T. McMeekin. 2002.
Responses of Listeria monocytogenes to acid stress and glucose availability
monitored by measurements of intracellular pH and viable counts. Int. J. Food
Microbiol. 75:89-97.
84. Smoot, L. M., and M. D. Pierson . 1998. Influence of environmental stress on
the kinetics and strength of attachment of Listeria monocytogenes Scott A to
Buna-N rubber and stainless steel. J. Food Prot. 61:1286-1292.
85. Smoot, L. M., and M. D. Pierson . 1998. Effect of environmental stress on the
ability of Listeria monocytogenes Scott A to attach to food contact surfaces. J.
Food Prot. 61:1293-1298.
86. Sokolovic, Z., A. Fuchs, and W. Goebel. 1990. Synthesis of species-specific
stress proteins by virulent strains of Listeria monocytogenes. Infect. Immun.
58:3582-3587.
87. Sokolovic, Z., J. Riedel, M. Wuenscher, and W. Goebel. 1993.
Surface-associated, PrfA-regulated proteins of Listeria monocytogenes
synthesized under stress conditions. Mol. Microbiol. 8:219-227.
88. Stack, H. M., R. D. Sleator, M. Bowers, C. Hill, and C. G. Gahan. 2005. Role
for HtrA in stress induction and virulence potential in Listeria monocytogenes.
Appl. Environ. Microbiol. 71:4241-4247.
89. Sue, D., D. Fink, M. Wiedmann, and K. J. Boor. 2004. sigmaB-dependent
gene induction and expression in Listeria monocytogenes during osmotic and
acid stress conditions simulating the intestinal environment. Microbiology
150:3843-3855.
90. Tasara, T., and R. Stephan. 2006. Cold stress tolerance of Listeria
monocytogenes: A review of molecular adaptive mechanisms and food safety
implications. J. Food Prot. 69:1473-1484.
91. Tasara, T., and R. Stephan. 2007. Evaluation of housekeeping genes in Listeria
monocytogenes as potential internal control references for normalizing mRNA
expression levels in stress adaptation models using real-time PCR. FEMS
Microbiol. Lett. 269:265-272.
92. Van, d., V, S. S. van, D. Molenaar, W. M. de Vos, T. Abee, and M. H.
Wells-Bennik. 2009. The SOS response of Listeria monocytogenes is involved
in stress resistance and mutagenesis. Microbiology.
93. Wemekamp-Kamphuis, H. H., J. A. Wouters, P. P. de Leeuw, T. Hain, T.
Chakraborty, and T. Abee. 2004. Identification of sigma factor sigma
B-controlled genes and their impact on acid stress, high hydrostatic pressure, and
freeze survival in Listeria monocytogenes EGD-e. Appl. Environ. Microbiol.
70:3457-3466.
94. Werbrouck, H., A. Vermeulen, C. E. Van, W. Messens, L. Herman, F.
Devlieghere, and M. Uyttendaele. 2009. Influence of acid stress on survival,
expression of virulence genes and invasion capacity into Caco-2 cells of Listeria
monocytogenes strains of different origins. Int. J. Food Microbiol. 134:140-146.
95. Wiedmann, M., T. J. Arvik, R. J. Hurley, and K. J. Boor. 1998. General
stress transcription factor sigmaB and its role in acid tolerance and virulence of
Listeria monocytogenes. J. Bacteriol. 180:3650-3656.
96. Wilson, R. L., L. L. Brown, D. Kirkwood-Watts, T. K. Warren, S. A. Lund,
D. S. King, K. F. Jones, and D. E. Hruby. 2006. Listeria monocytogenes
10403S HtrA is necessary for resistance to cellular stress and virulence. Infect.
Immun. 74:765-768.
97. Wonderling, L. D., B. J. Wilkinson, and D. O. Bayles. 2004. The htrA (degP)
gene of Listeria monocytogenes 10403S is essential for optimal growth under
stress conditions. Appl. Environ. Microbiol. 70:1935-1943.
98. Yamaoka, Y., T. Kawakita, and K. Nomoto. 2000. Protective effect of a
traditional Japanese medicine, Bu-zhong-yi-qi-tang (Japanese name:
Hochu-ekki-to), on the restraint stress-induced susceptibility against Listeria
monocytogenes. Immunopharmacology 48:35-42.
99. Yoon, K. S., C. N. Burnette, K. A. bou-Zeid, and R. C. Whiting. 2004.
Control of growth and survival of Listeria monocytogenes on smoked salmon by
combined potassium lactate and sodium diacetate and freezing stress during
refrigeration and frozen storage. J. Food Prot. 67:2465-2471.
100. Zhang, D., K. Kishihara, B. Wang, K. Mizobe, C. Kubo, and K. Nomoto.
1998. Restraint stress-induced immunosuppression by inhibiting leukocyte
migration and Th1 cytokine expression during the intraperitoneal infection of
Listeria monocytogenes. J. Neuroimmunol. 92:139-151.
Related documents