Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Name:______________________________________________ Date:_______________Block:_______ Algebra 2 Final Exam Review Day 1 – Polynomials & Statistics Simplify completely. 1. (x ) 2. 3 x 8 x 4. ( x 2 ) 6 5. 3 0 5 x2 y5z 3. 3 2 x 6 36 x 7 y 5 4x 4 y 2 6. (3x 1 y 2 z 2 )(3x 5 yz 4 ) 7. ( 4 x 4 3 x 2 3x ) + ( 12 x 4 3x 3 5x 2 8x 1) 8. ( 3x 2 7 x 4) - ( 4 x 2 12 x 8) 9. (3x – 7)(2x + 1) 2 10. (x -1)(x + 3)(x + 4) 11. (3x – 1)2 Factor the following polynomials. 12.) x 2 5 x 36 13.) x 2 64 14.) 4 x 2 3x 1 15.) x 2 49 16.) x 3 5 x 2 x 5 17.) x 3 4 x 2 x 4 Divide the polynomials using BOTH long and synthetic division. 18. ( x 3 x 2 2 x 24) ( x 3) 19. (4 x 3 52 x 15) ( x 5) Find all of the zeros of the given function using both long division and synthetic division. 20.) f ( x) x 3 9 x 2 4 x 36 ; x = 2 is a zero 21.) f ( x) 2 x 3 11x 2 18x 9 ; x = -3 is a zero Perform the indicated operations. Then state the domain. Let f ( x) x 2 4 x 5 and g ( x ) x 9 22.) f ( x) g ( x) 23.) g ( x) f ( x) 24.) f ( x) g ( x) 25.) f ( g ( x )) Statistics 26.) The data, shown below, was collected regarding the class size of Miss Sweeney’s courses at RBRHS this year. Class Size 6 14 16 18 Tally | || || | Frequency 1 2 2 1 a. Calculate the mean, median, mode, and range of the data. Mean = Mode = Median = Range = b. Which of the following statements are true? Circle all the apply! A) range > median B) mean = median C) median > mean D) median < mean Name:______________________________________________ Date:_______________Block:_______ Algebra 2 Final Exam Review Day 2 – Quadratics, Roots & Rational Expressions Identify the form of the quadratic equation and determine if the graph opens up or down. Then find the vertex, axis of symmetry, roots, complete the table and graph the function. Form:_______________________ or 1.) y x 2 5x 6 x y Form:_______________________ or 2.) y ( x 2) 2 3 x y Evaluate the expression. 3.) 3 125 27 4.) 4 81 16 5.) 2433 5 Simplify the expression. 6.) 2 x 1 / 4 x 9 / 4 1 64 x 3 y 6 z 12 1 8.) 16 2 16 4 10.) 3 7.) 9.) 3 5 4 11.) 80 256x y 8 2 14 Solve the equation. Check for extraneous solutions. 12.) x1 / 2 3 8 14.) x 6 x 6 13.) 5 7 x 3 5 2 15.) ( x 9) 1 31 State the domain. 16.) h( x) 2 3x 1 17.) h( x) 7 4 x3 Find the inverse of the equation. 18.) y 2 x 3 19.) y x 3 Simplify. 20.) x2 x x 1 Multiply/Divide. 21.) 9x 2x 8 8 x 32 3x 22.) x5 x5 x 2x 23.) x 2 5x 4 x4 2 x x 24.) x 2 4x 4 x2 x3 26.) 1 2x x2 x5 29.) 1 5 3 x 4x 2 Add/Subtract. 25.) x4 4 x 6x 6x 27.) 2 3 x 3 x 1 Solve. 28.) x 5 x 2 6 3 Name:______________________________________________ Date:_______________Block:_______ Algebra 2 Final Exam Review Day 3 – Logarithms, Exponentials & Trigonometry Logarithms Rewrite the equation in exponential form. 1. 2. Simplify the expression. 3. 4. 5. Use a property of logarithms to evaluate the expression. 6.. 7.. 8.. 9.. Use and 10. to approximate the value of the expression. 11.. 12. Expand the expression. 14. 15. Condense the expression. 16. 17. Use the change-of-base formula to evaluate the expression. 18. 19. Solve the equation. 20. 21. 22. 23. 24. 25. Solve the equation. Check for extraneous solutions. 26. 27. Exponentials Graph the function and label at least three points on the graph, identify if its growth or decay. State the domain and range. 1 2. y 4 2 1. y 3 x Domain: Range: x Domain: Range: x 1 2. What is the domain of y 2 - 4? What is the range? How was the function shifted? 3 3. What is the domain of 4. What is the domain of ? What is the range? How was the function shifted? ? What is the range? How was the function shifted? 5. Jacob deposited $1800 in an account that pays 2.75% annual interest. Find the balance after 3 years if the interest is compounded: a) Annually: c) monthly: b) Quarterly: d) Daily: Trigonometry 1 Given the equation y 3 cos x 2 graph it and find: 2 Amplitude: Period: Vertical shift: Given the equation y 2 cos2x 1 graph it and find: Amplitude: Period: Vertical shift: Determine the amplitude, period and write the equation for each function given amplitude: period: equation: amplitude: period: equation: Determine the amplitude and period for each function given A) y = 2 sin(x)+ 2 B) y = -3 cos (2x-1) C) y = cos x amplitude: amplitude: amplitude: period: period: period: shift: shift: shift: