Download AP Calculus Section 4 - LCMR School District

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
AP Calculus Section 6.3
Integration by Substitution
Homework:
Page 371 #9 – 45 odd and #63, 65
Objective: SWBAT solve integration problems using u-substitution.
The method of substitution can be analyzed by looking at the chain rule.
We know by the chain rule that
d
 F ( g ( x))  F '  g ( x)  g '( x)
dx
Therefore
 F '  g ( x)  g '( x)dx  F ( g ( x))  C
If this is true, why? This will lead us into integral substitution.
To integrate using u-substitution do the following:
a. Make a choice for u, say u  g ( x )
du
 g '( x) and solve for dx
b. Compute
dx
c. Make the substitution :
u  g ( x)
du
g '( x)
At this point, the entire integral should be in terms of u. If it is not you need to
rethink u, or make an additional substitution.
dx 
d. Evaluate the integral and replace u with g ( x )
x
2
 1
50
 sin  x  9 dx
 2 x  dx
u=
u=
 cos  5x dx
 sin
2
x cos xdx
u=

e
x
x
u=

dx
u=
dx
1
3
x  8
5
u=
t
4
x
3  5t 5 dt
2
x  1dx
u=
u=
1

2
  x  sec  x dx
x2  2
 x  1 dx
u=
u=
5
cos 3x
 3x  2dx
 2  sin 3x dx
u=
u=
 sin
e2 x
 e2 x  4dx
3
x cos 2 xdx
u=
u=
 cos
3
 sin
xdx
5
x cos 2 xdx
u=

u=
x
1
sin xdx
x
x  5dx
u=
u=
Inverse Trig Integrals – We will focus on only these two inverse integrals.
a

2
du
1
u
 tan 1  c
2
u
a
a
du
a u
2
2
 sin 1
u
c
a
1. Find the integral
dt
 9  4t
2
2. Find the integral

dt
1  4t 2
Extra Practice Section 6.3 u-Substitution
1.
 3x
2.

3.
 cos
4.
 csc 2t cot 2tdt
5.
x
6.
 cos
7.

8.
 tan 3x sec
9.

x 2 dx
x 1
10.

x 2 dx
11.
 9  4t
12.

13.
x
1  2 x 2 dx
3 xdx
3  7 x2
3
dx
2
2x
5 x 4  18dx
3
sin x
dx
3
x
1
sin xdx
x
1  x3
dt
2
dx
1  4x2
4
x
dx
9
2
3 xdx
Related documents