Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
The Robert Smyth School Mathematics Faculty Sequences Innovation & excellence HW2 – Grade C/B Homework on nth term – Grade C/B 1. The nth term of a sequence is given by the expression n2– 3 Write down the first three terms of the sequence. ............................................................................................................................................... ............................................................................................................................................... Answer .................... , ..................... , ...................... (Total 2 marks) 2. (a) Write down the first three terms of the sequence whose nth term is given by 5n 3. ..................................................................................................................................... ..................................................................................................................................... Answer........................................................................................................................ (2) (b) The letters p and q represent integers. p is an odd number and q is an even number. (i) Which of these statements describes the number 2p + q? always even always odd could be odd or even Explain your answer. ........................................................................................................................... ........................................................................................................................... (2) (ii) 1 q is always even. 2 Give an example to show that Anna is wrong. Anna says that p + ........................................................................................................................... ........................................................................................................................... (1) (Total 5 marks) The Robert Smyth School 1 The Robert Smyth School Mathematics Faculty Sequences Innovation & excellence 3. (a) p is an odd number. Is 2p + 1 an odd number, an even number or could it be either? Tick the correct box. odd even either (1) (b) The nth term of a sequence is 4n + 1 (i) Write down the first three terms of the sequence. ........................................................................................................................... ........................................................................................................................... Answer .......................................................... (2) (ii) Is 122 a term in this sequence? You must explain your answer. ........................................................................................................................... ........................................................................................................................... ........................................................................................................................... (1) (Total 4 marks) 4. A sequence of numbers is shown. 2 (a) 5 8 11 14 Find an expression for the nth term of the sequence. ...................................................................................................................................... ...................................................................................................................................... Answer ......................................................................... (2) (b) Explain why 99 will not be a term in this sequence. ...................................................................................................................................... ...................................................................................................................................... ...................................................................................................................................... (2) (Total 4 marks) The Robert Smyth School 2 The Robert Smyth School Mathematics Faculty Sequences Innovation & excellence 5. A sequence of rectangular patterns is shown. Pattern 1 (a) Pattern 2 Pattern 3 Pattern 4 Pattern 5 Calculate the number of small squares in Pattern 20. ..................................................................................................................................... Answer ......................................................................... (2) (b) Explain why the number of small squares in Pattern n is n(n + 2). ..................................................................................................................................... ..................................................................................................................................... ..................................................................................................................................... (2) (Total 4 marks) 6. Here is a number sequence. 1 (a) 3 6 10 15 Write down the next two numbers in the sequence. ...................................................................................................................................... Answer …………………………………......... (2) (b) Describe a rule for continuing the sequence. ...................................................................................................................................... ...................................................................................................................................... (1) (c) (i) Work out the value of 2 x +x when x = 5 ............................................................................................................................ Answer …………………………………......... (1) (ii) Factorise 2 x +x ............................................................................................................................ Answer …………………………………......... (1) The Robert Smyth School 3 The Robert Smyth School Mathematics Faculty Sequences Innovation & excellence Darren says that x2 + x is always even. (iii) Using your Answer to part (ii), or otherwise, explain why this is true. ............................................................................................................................ ............................................................................................................................ ............................................................................................................................ (2) (Total 7 marks) 7. Part of a number grid is shown below. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 The shaded shape is called L3 because it has the number 3 at the top. The sum of the numbers in L3 is 26. (a) Calculate the sum of the numbers in L22 ..................................................................................................................................... Answer …………………………………......... (1) (b) Fill in the empty squares of Ln n (2) (c) Write down an expression, in terms of n, for the sum of the numbers in Ln Simplify your expression. ..................................................................................................................................... ..................................................................................................................................... Answer …………………………………......... (2) (d) If the sum of the numbers in Ln is 143, find the value of n. ..................................................................................................................................... ..................................................................................................................................... Answer …………………………………......... (2) (Total 7 marks) The Robert Smyth School 4 The Robert Smyth School Mathematics Faculty Sequences Innovation & excellence 8. Rearrange y = mx + c to make x the subject of the formula. ..................................................................................................................................... ..................................................................................................................................... Answer x = .................................................... (Total 4 marks) 9. Make p the subject of the formula t = 5p + 40 ....................................................................................................................................... ....................................................................................................................................... Answer p = ................................................................. (Total 2 marks) 10. Make r the subject of the formula p = 3 + 2r ……………...........………………………….....……………………………………. ……………...........………………………….....……………………………………. ……………...........………………………….....……………………………………. ……………...........………………………….....……………………………………. Answer r = …………………………………. (Total 2 marks) 11. Make c the subject of the formula d= c +e 5 ............................................................................................................................................... ............................................................................................................................................... ............................................................................................................................................... ............................................................................................................................................... Answer ....................................... (Total 2 marks) The Robert Smyth School 5 The Robert Smyth School Mathematics Faculty Sequences Innovation & excellence 1. –2, 1, 6 B2 –1 each error or emission. Ignore extra terms 12 3, 22 3, 32 3 is B1 [2] 2. (a) 2, 7, 12 B2 B1 for 2 correct (b) (i) Always even B1 2 × odd = even, even + even = even (ii) B1 e.g. 3 + ½ (4) = 5 look for 1 2 (multiple of 4) B1 [5] 3. (a) Odd B1 Any clear indication (b) (i) 5, 9, 13 – 1 each error or omission 1, 5, 9 scores B1 9, 13, 17 scores B1 B2 (ii) No and valid reason eg 121 is in the sequence (all) terms are odd 122 is even 121 ÷ 4 is not an integer Note: “No” can be implied B1 [4] 4. (a) 3n – 1 B2 oe B1 for any of the following: 3n (+c) n=×3–1 nth = × 3 – 1 nth × 3 – 1 n3 – 1 (b) Complete explanation eg 2, 5, 8… not multiples of 3 eg 98 and 101 are in the sequence eg 3n – 1 = 99 does not give a whole number eg n = 33.3… eg 100 is not a multiple of 3 eg 99 is a multiple of 3 Part explanation B1 The Robert Smyth School B2 6 The Robert Smyth School Mathematics Faculty Sequences Innovation & excellence eg 101 is in the sequence eg 98 is the nearest SC1 for correctly using their answer from (a) provided linear but not n + 3 [4] 5. (a) (b) 20 × 22 M1 440 A1 n squares across or n + 2 squares high n wide or n along n + 2 up or length n + 2 B1 n(n + 2) for area B1 [4] Multiply them for area/total number of squares 6. (a) 21 B1 28 B1 (b) Valid explanation Accept: Add 1, then add 2. ...etc Differences increasing by 1 Triangle numbers Adding on one more Do not accept: Adding on one Adding on an extra number +6 +7 B1 (c) (i) 30 B1 (ii) x(x + 1) B1 (iii) Valid explanation Odd × even = even scores B1 Even × odd = even scores B1 If x is odd, x2 is odd, odd + odd = even and if x is even, x2 is even, even + even = even scores B2 or Bl for each part One numerical eg 22 + 2 = 6 B1 Two numerical Bl One odd and one even with eg both even B2 B2 [7] The Robert Smyth School 7 The Robert Smyth School Mathematics Faculty Sequences Innovation & excellence 7. (a) 83 (b) n+8 B1 B1 n+9 B1 Allow one mark if transposed (c) (d) n + their (n + 8) + their (n + 9) Provided n ± k in both boxes M1 3n + 17 A1 143 – 17 or 126 seen T & I 42 gets 2 marks M1 42 A1 Embedded answer Ml A0 [7] 8. y – c = mx B1 ( y – c) =x m B1 must be in correct order y – c gets B0B0 m [2] 9. t – 40 = 5p or t ÷ 5 = p + 8 oe condone one sign error in rearranging to isolate the term in p, for M1 M1 (t – 40) ÷ 5 = p or t ÷ 5 – 8 = 9 t – 40 ÷ 5 = p (without brackets) scores M1 only t – 40 ÷ 5 = p, seen without working, implies M1 A1 [2] 10. p – 3 = 2r or p/2 = 3/2 + r or M1 (p + 3)/2 or (3 – p)/2 (p – 3)/2 or p/2 – 3/2 oe A1 [2] 11. c =d–e 5 M1 or 5d = c + 5e o.e c = 5(d –e) A1 or 5d – 5e [2] The Robert Smyth School 8