Download Homework on analysing questionnaires – grade C

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
The Robert Smyth School
Mathematics Faculty
Sequences
Innovation & excellence
HW2 – Grade C/B
Homework on nth term – Grade C/B
1.
The nth term of a sequence is given by the expression n2– 3
Write down the first three terms of the sequence.
...............................................................................................................................................
...............................................................................................................................................
Answer .................... , ..................... , ......................
(Total 2 marks)
2.
(a)
Write down the first three terms of the sequence whose nth term is given by 5n  3.
.....................................................................................................................................
.....................................................................................................................................
Answer........................................................................................................................
(2)
(b)
The letters p and q represent integers.
p is an odd number and q is an even number.
(i)
Which of these statements describes the number 2p + q?
always even
always odd
could be odd or even
Explain your answer.
...........................................................................................................................
...........................................................................................................................
(2)
(ii)
1
q is always even.
2
Give an example to show that Anna is wrong.
Anna says that p +
...........................................................................................................................
...........................................................................................................................
(1)
(Total 5 marks)
The Robert Smyth School
1
The Robert Smyth School
Mathematics Faculty
Sequences
Innovation & excellence
3.
(a)
p is an odd number.
Is 2p + 1 an odd number, an even number or could it be either?
Tick the correct box.
odd
even
either
(1)
(b)
The nth term of a sequence is 4n + 1
(i)
Write down the first three terms of the sequence.
...........................................................................................................................
...........................................................................................................................
Answer ..........................................................
(2)
(ii)
Is 122 a term in this sequence?
You must explain your answer.
...........................................................................................................................
...........................................................................................................................
...........................................................................................................................
(1)
(Total 4 marks)
4.
A sequence of numbers is shown.
2
(a)
5
8
11
14
Find an expression for the nth term of the sequence.
......................................................................................................................................
......................................................................................................................................
Answer .........................................................................
(2)
(b)
Explain why 99 will not be a term in this sequence.
......................................................................................................................................
......................................................................................................................................
......................................................................................................................................
(2)
(Total 4 marks)
The Robert Smyth School
2
The Robert Smyth School
Mathematics Faculty
Sequences
Innovation & excellence
5.
A sequence of rectangular patterns is shown.
Pattern 1
(a)
Pattern 2
Pattern 3
Pattern 4
Pattern 5
Calculate the number of small squares in Pattern 20.
.....................................................................................................................................
Answer .........................................................................
(2)
(b)
Explain why the number of small squares in Pattern n is n(n + 2).
.....................................................................................................................................
.....................................................................................................................................
.....................................................................................................................................
(2)
(Total 4 marks)
6.
Here is a number sequence.
1
(a)
3
6
10
15
Write down the next two numbers in the sequence.
......................................................................................................................................
Answer ………………………………….........
(2)
(b)
Describe a rule for continuing the sequence.
......................................................................................................................................
......................................................................................................................................
(1)
(c)
(i)
Work out the value of
2
x +x
when x = 5
............................................................................................................................
Answer ………………………………….........
(1)
(ii)
Factorise
2
x +x
............................................................................................................................
Answer ………………………………….........
(1)
The Robert Smyth School
3
The Robert Smyth School
Mathematics Faculty
Sequences
Innovation & excellence
Darren says that x2 + x is always even.
(iii)
Using your Answer to part (ii), or otherwise, explain why this is true.
............................................................................................................................
............................................................................................................................
............................................................................................................................
(2)
(Total 7 marks)
7.
Part of a number grid is shown below.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
The shaded shape is called L3 because it has the number 3 at the top.
The sum of the numbers in L3 is 26.
(a)
Calculate the sum of the numbers in L22
.....................................................................................................................................
Answer ………………………………….........
(1)
(b)
Fill in the empty squares of Ln
n
(2)
(c)
Write down an expression, in terms of n, for the sum of the numbers in Ln
Simplify your expression.
.....................................................................................................................................
.....................................................................................................................................
Answer ………………………………….........
(2)
(d)
If the sum of the numbers in Ln is 143, find the value of n.
.....................................................................................................................................
.....................................................................................................................................
Answer ………………………………….........
(2)
(Total 7 marks)
The Robert Smyth School
4
The Robert Smyth School
Mathematics Faculty
Sequences
Innovation & excellence
8.
Rearrange
y = mx + c
to make x the subject of the formula.
.....................................................................................................................................
.....................................................................................................................................
Answer x = ....................................................
(Total 4 marks)
9.
Make p the subject of the formula t = 5p + 40
.......................................................................................................................................
.......................................................................................................................................
Answer p = .................................................................
(Total 2 marks)
10.
Make r the subject of the formula
p = 3 + 2r
……………...........………………………….....…………………………………….
……………...........………………………….....…………………………………….
……………...........………………………….....…………………………………….
……………...........………………………….....…………………………………….
Answer r = ………………………………….
(Total 2 marks)
11.
Make c the subject of the formula
d=
c
+e
5
...............................................................................................................................................
...............................................................................................................................................
...............................................................................................................................................
...............................................................................................................................................
Answer .......................................
(Total 2 marks)
The Robert Smyth School
5
The Robert Smyth School
Mathematics Faculty
Sequences
Innovation & excellence
1.
–2, 1, 6
B2
–1 each error or emission.
Ignore extra terms
12  3, 22  3, 32  3 is B1
[2]
2.
(a)
2, 7, 12
B2
B1 for 2 correct
(b)
(i)
Always even
B1
2 × odd = even,
even + even = even
(ii)
B1
e.g. 3 + ½ (4) = 5
look for 1 2 (multiple of 4)
B1
[5]
3.
(a)
Odd
B1
Any clear indication
(b)
(i)
5, 9, 13
– 1 each error or omission
1, 5, 9 scores B1
9, 13, 17 scores B1
B2
(ii)
No and valid reason
eg 121 is in the sequence
(all) terms are odd
122 is even
121 ÷ 4 is not an integer
Note: “No” can be implied
B1
[4]
4.
(a)
3n – 1
B2
oe
B1 for any of the following:
3n (+c)
n=×3–1
nth = × 3 – 1
nth × 3 – 1
n3 – 1
(b)
Complete explanation
eg 2, 5, 8… not multiples of 3
eg 98 and 101 are in the sequence
eg 3n – 1 = 99 does not give a whole number
eg n = 33.3…
eg 100 is not a multiple of 3
eg 99 is a multiple of 3
Part explanation B1
The Robert Smyth School
B2
6
The Robert Smyth School
Mathematics Faculty
Sequences
Innovation & excellence
eg 101 is in the sequence
eg 98 is the nearest
SC1 for correctly using their answer from (a) provided linear
but not n + 3
[4]
5.
(a)
(b)
20 × 22
M1
440
A1
n squares across or n + 2 squares high
n wide or n along
n + 2 up or length n + 2
B1
n(n + 2) for area
B1
[4]
Multiply them for area/total number of squares
6.
(a)
21
B1
28
B1
(b)
Valid explanation
Accept:
Add 1, then add 2. ...etc
Differences increasing by 1
Triangle numbers
Adding on one more
Do not accept:
Adding on one
Adding on an extra number
+6 +7
B1
(c)
(i)
30
B1
(ii)
x(x + 1)
B1
(iii)
Valid explanation
Odd × even = even scores B1
Even × odd = even scores B1
If x is odd, x2 is odd, odd + odd = even
and if x is even, x2 is even,
even + even = even scores B2 or Bl
for each part
One numerical eg 22 + 2 = 6 B1
Two numerical Bl
One odd and one even with eg both
even B2
B2
[7]
The Robert Smyth School
7
The Robert Smyth School
Mathematics Faculty
Sequences
Innovation & excellence
7.
(a)
83
(b)
n+8
B1
B1
n+9
B1
Allow one mark if transposed
(c)
(d)
n + their (n + 8) + their (n + 9)
Provided n ± k in both boxes
M1
3n + 17
A1
143 – 17 or 126 seen
T & I  42 gets 2 marks
M1
42
A1
Embedded answer Ml A0
[7]
8.
y – c = mx
B1
( y – c)
=x
m
B1
must be in correct order
y
– c gets B0B0
m
[2]
9.
t – 40 = 5p or t ÷ 5 = p + 8
oe condone one sign error in rearranging to isolate the term in
p, for M1
M1
(t – 40) ÷ 5 = p or t ÷ 5 – 8 = 9
t – 40 ÷ 5 = p (without brackets) scores M1 only
t – 40 ÷ 5 = p, seen without working, implies M1
A1
[2]
10.
p – 3 = 2r or p/2 = 3/2 + r
or
M1
(p + 3)/2 or (3 – p)/2
(p – 3)/2 or p/2 – 3/2
oe
A1
[2]
11.
c
=d–e
5
M1
or 5d = c + 5e o.e
c = 5(d –e)
A1
or 5d – 5e
[2]
The Robert Smyth School
8
Related documents