Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
ContinuousProbabilityDistributions y Recall that a random variable is discrete if the range of values that it takes on is finite. This refers to the number of values X can take on,, not the size of the values. On the contrary, y, a continuous random variable can assume any value in an interval or in a collection of intervals. Typically an uncountably infinite range can result from a random variable that makes a physical measurement — the position, position size, size time, time age, age flow, flow volume, volume or area of something. y For a continuous random variable, it is not possible to talk about the probability of the random variable assuming a particular value. y Instead, we talk about the probability of the random variable assuming a value within a given interval. CONTINUOUSRANDOMVARIABLES y Thus the probability of the random variable assuming a value within some given interval from a to b is defined to be the area under the ggraph p of the p probabilityy densityy function between a and b. 2 Continuousprobabilitydistribution Continuousprobabilitydistributions Twocharacteristics y Theprobabilityoftherandomvariableassumingavalue Theprobabilitythat Th b bilit th t x assumesavalueinany l i intervalliesintherangeoffrom0to1. 2 Thetotalprobabilityofalltheintervals 2. The total probability of all the intervals withinwhichx canassumeavalueof1. 1 1. f (x) withinsomegivenintervalfromx i hi i i lf i d fi d b 1 tox2 isdefinedtobe theareaunderthegraphoftheprobabilitydensity functionbetweenx1 andx2. f (x) Exponential Uniform f (x ) x1 x2 Normal x x1 x2 x1 3 x2 x x 4 Someexamples CumulativeDistributionFunction y ThecumulativedistributionfunctionF ofacontinuous a P(x<a) random variable has the same definition as that for a randomvariablehasthesamedefinitionasthatfora discreterandomvariable.Thatis, F ( x) P ( X d x) y InpracticethismeansthatFisessentiallyaparticular h h ll l “antiderivative”ofthepdf since b F ( x) P(x>b) ³ x f f ( t ) dt y ThusatthepointswherefiscontinuousF’(x)=f(x). y Knowingthecdf Knowing the cdf ofarandomvariablegreatly of a random variable greatly Noticethatforacontinuousrandomvariablex, ( ) P(X=a)=0 foranyspecificvalueabecausethe“areaaboveapoint”underthecurve isalinesegmentandhencehas0area.Specificallythismeans P(X<a)=P(Xa) P(a<X<b)=P(a X<b)=P(a<X b)=P(aX b) 5 P ( X d x) facilitatescomputationofprobabilitiesinvolvingthat randomvariablesince 6 P ( a d X d b) F (b) F ( a ) MethodofProbabilityCalculation MeanandVarianceofacontinuousrandom variable y Theprobabilitythatacontinuousrandomvariable y TheexpectedvalueofacontinuousrandomvariableXisdefined by xliesbetweenalowerlimitaandanupperlimitb is P(a<x<b)=(cumulativeareatotheleftofb)– ( ) ( ) (cumulativeareatotheleftofa) =P(x<b)– P(x<a) E( X ) a - b xf ( x)dx E (( X P ) 2 ) Onceagainthestandarddeviationisthesquarerootofvariance. Variance and standard deviation do not exist if the expected Varianceandstandarddeviationdonotexistiftheexpected valuebywhichtheyaredefineddoesnotconverge. a b f f y Notethesimilaritytothedefinitionfordiscreterandomvariables. Onceagainweoftendenoteitbyμ.Asinthediscretecasethis integralmaynotconverge,inwhichcasetheexpectationifXis undefined. undefined. y Asinthediscretecasewedefinethevariance by Var ( X ) = ³ 7 8 Areaunderaprobabilitydistributioncurve Theprobabilityofarandomvariabletakingon aparticularvalue Shaded area is between a and b; in other words d what h t we have h i is P (a x b) x=a P(x=34)=0 x x=b Shaded area is 1.0 or 100% Shadedareais1(or ( 100%) 9 x 10 FamiliesofContinuousprobability distributions DefinitionandBasicProperties Theprobabilitydistributionfunctionofacontinuous randomvariableshouldsatisfythefollowing properties: i 1. 2. ³ f 3. 11 y UniformProbabilityDistribution Itisanonnegativefunction(butunlikeinthediscrete caseitmaytakeonvaluesexceeding1). y g ) Itsdefiniteintegraloverthewholereallineequalsone. Thatis: f f ( x ) dx d y NormalProbabilityDistribution 1 y ExponentialProbabilityDistribution Andfinally,followingfromthedefinitionofacontinuous y, g randomvariableandtheformulaforcomputingthearea underacurvewehave: ³ b a f ( x)dx P(a d X d b) X=34 Inotherwords,sincetheprobabilityofacontinuousrandom In other words since the probability of a continuous random variableassumingavaluewithinsomegivenintervalisdefined tobethearea undertheprobabilitydistributioncurvewithin thatinterval,theareaunderaparticularpointisapparently h l h d l l zero. 12 UniformProbabilityDistribution UniformProbabilityDistribution Arandomvariableissaidtohaveauniform distribution iftheprobabilityisproportionalto thelengthoftheinterval. h l h f h i l Thepdf ofauniformlydistributedrandomvariable is defined as: isdefinedas: y Expectedvalue: E(x) = (a + b)/2 f (x) = 1/(b – a) for a < x < b =0 otherwise th i y Variance: whereaisthelowestvaluethatx cantake(the ( lowerboundoftheinterval),andb isthelargest value(theupperboundoftheinterval). 13 Var(x) = (b - a)2/12 14 UniformProbabilityDistribution:Example UniformProbabilityDistribution:Example Slatercustomersarechargedfortheamountofsalad theytake.Samplingsuggeststhattheamountof saladtakenisuniformlydistributedbetween5ounces and15ounces. Uniform Probability Density Function is: UniformProbabilityDensityFunctionis: Expectedvalue: f(x) = 1/10 for 5 < x < 15 =0 otherwise Variance: wherewedenotetheamountofsaladasx. Yourtaskistofindtheexpectedamountofsaladthat youmaygetonaverage,anditsvariance. 15 Var(x) = (b - a)2/12 = (15 – 5)2/12 = 8.33 16 UniformProbabilityDistribution:Graphical representation p Anotherexamplesoftdrink Basedonthepreviousexample,whatistheprobabilitythat theamountofsaladyougetwillbebetween12and15 h f l d ill b b 12 d 15 ounces? y You’reproductionmanagerofasoftdrinkbottling p g g company.Youbelievethatwhenamachineisset todispense12oz.,itreallydispenses11.5to12.5 oz.inclusive.Supposetheamountdispensedhas auniformdistribution.Whatistheprobability that less than 11 8 oz is dispensed? thatlessthan11.8oz.isdispensed? f(x) P(12 < x < 15) = 1/10(3) = .3 1/10 x 5 10 12 15 Salad Weight (oz.) (oz ) 17 E( ) = (a E(x) ( + b)/2 = (5 + 15)/2 = 10 18 Normaldistribution ExampleAnswerkey y Describe many phenomena f(x) 1.0 1 d c y Goodapproximationtobinomialandhypergeometric 1 12.5 11.5 1 1.0 1 P(11.5d x d 11.8) y Limiting distribution of sample averages y Basis for Classical Statistical Inference x 11.5 11.8 y Two Parameters : mean (), standard deviation () 12.5 y X ~ normal distribution with mean & variance 2 =(Base)(Height) =(11.8 11.5)(1)=0.30 1 e 2S V f ( x; P , V ) 19 ( xP )2 2V 2 f x f 20 NormalDistribution Normaldistribution(Youden) Anormalprobabilitydistribution,whenplotted,givesa bellshapedcurvesuchthat: 1 Thetotalareaunderthecurveis1. 1. The total area under the curve is 1 2. Thecurveissymmetricaboutthemeanofthe distribution. 3 Thetwotailsofthecurveextendindefinitely. 3. Th t t il f th t d i d fi it l Standarddeviation= THE NORMAL NORMAL LAWOFERROR STANDSOUTINTHE EXPERIENCE OF MANKIND EXPERIENCEOFMANKIND ASONEOFTHEBROADEST GENERALIZATIONSOFNATURAL PHILOSOPHY+ITSERVESASTHE GUINDINGINSTRUMENTINRESEARCHERS INTHEPSYCHICALANDSOCIALSCIENCESAND INMEDICINEAGRICULTUREANDINGENEERING+ ITISANINDISPENSABLETOOLFORTHEANALYSISANDTHE INTERPRETATIONOFTHEBASICDATAOBTAINEDBYOBSERVATIONANDEXPERIMENT 21 Normaldistributionwithmean andstandarddeviation. 22 NormalDistribution NormalDistribution Eachofthetwoshadedareasis 0.5(or50%) .5 Normaldistributionwithdifferentmeans(canbenegativeaswell)butthesame ( g ) standarddeviation .5 x Ɋ=-5 Normaldistributionwiththesame Eachofthetwoshaded areasisclosetozero mean,butdifferentstandard deviations: largervaluesresult inwiderandflattercurves 23 Ɋ Ȃ 3ɐ Ɋ + 3ɐ 24 Ɋ=5 =5 =10 =16 16 Ɋ=10 TheStandardNormalDistribution Standardizinganormaldistribution Definition Thenormaldistributionwith=0and=1iscalledthe standardnormaldistribution. Foranormalrandomvariablex,aparticularvalue l d bl l l ofx canbeconvertedtoitscorrespondingz value by using the formula byusingtheformula x P z V =1 where where and and arethemeanandstandarddeviation are the mean and standard deviation ofthenormaldistributionofx,respectively. The density function forastandardnormalrandom Thedensityfunction for a standard normal random variableisdefinedas μ=0 -3 3 -2 2 -11 0 1 2 3 Theunitsmarkedonthehorizontalaxisofthestandardnormal curvearedenotedbyz andarecalledthez valuesor z scores.A specificvalueofz ifi l f givesthedistancebetweenthemeanandthe i th di t b t th d th pointrepresentedbyz intermsofthestandarddeviation. 25 where z = (x – P)/V where 26 Example:P(3.8X5),X~N(5,102) “Standardization”meansonetable!!! Z X P V X P V Z Standardized Normal Distribution V 3.8 5 10 .12 Standardized Normal Distribution V= 1 V = 10 V=1 .0478 P P= 0 X Z 27 3 8 P= 5 3.8 -.12 12 P = 0 X 28 Let’sconsiderr.v.XdistributedN(5,102) Probabilitieswithin1;2;3sigma P(2.9 X 7.1) = P(-0.21 Z 0.21) = 0.1664 X P Z V X P Z V 2.9 5 10 7.1 5 10 .21 99.72% V=1 95.44% 68.26% .21 -.21 0 .21 Z P(X > 10) = P( Z >0.50) >0 50) = 1 – P(Z<0.5) P(Z<0 5) = 1-0.6915 1 0 6915 Z 29 X P V 10 5 10 P – 3V .50 30 P – 2V P – 1V P P + 1V P + 3V P + 2V x Z NormalApproximation ofBinomialProbabilities of Binomial Probabilities Example– Binomialapproximation y Whenthenumberoftrials,n,becomeslarge, 31 evaluatingthebinomialprobabilityfunctionby l i h bi i l b bili f i b handorwithacalculatorisdifficult y Thenormalprobabilitydistributionprovidesan The normal probability distribution provides an easytouseapproximationofbinomial probabilitieswheren>20,np >5,andn(1 p)>5. Set P np and V npq y Addandsubtract0.5(acontinuitycorrection f t )b factor)becauseacontinuousdistributionisbeing ti di t ib ti i b i usedtoapproximateadiscretedistribution.For example, p , P(x=10)isapproximatedbyP(9.5<x<10.5) y Supposex isabinomialrandomvariablewith n =30andp =.4.Usingthenormalapproximation tofindP(x 10). n = 30 p = .4 q = .6 np = 12 nq = 18 The h normall approximation is ok! Calculate P np 30(.4) 12 V npq Approximation– answerkey 10.5 12 ) 2.683 P ( z d .56) .2877 33 P( x 9.5) P(x t 5 ) P ( x t 4.5 ) P(x ! 5 ) P(x ! 5.5) P(( 5 x 100 ) P(( 5.5 x 9.5 ) P(( 5 d x 10 ) P(( 4.5 x 9.5 ) 34 Yetanotherexampleonapproximation y AproductionlineproducesAAbatterieswitha reliabilityrateof95%.Asampleofn =200 batteriesisselected.Findtheprobabilitythatat l t 195 f th b tt i least195ofthebatterieswork. k Success = working battery n = 200 p = .95 np = 190 nq = 10 P ( x t 195) | P( z t The normal approximation is ok! 194.5 190 ) 200(.95)(.05) Standardnormalprobabilitydistribution:Example PepZonesellsautopartsandsuppliesincludingapopular multigrademotoroil.Whenthestockofthisoildropsto 20gallons,areplenishmentorderisplaced. Thestoremanagerisconcernedthatsalesarebeinglostdueto stockoutswhilewaitingforanorder.Ithasbeendetermined thatdemandduringreplenishmentleadtimeisnormally distributedwithameanof15gallonsandastandarddeviation of 6 gallons The manager would like to know the probability of of6gallons.Themanagerwouldliketoknowtheprobabilityof astockout,P(x >20). P ( z t 1.46) 1 .9278 .0722 35 2.683 Anotherexamples– binomialapproximation P( 10 ) P(x P ( x d 10) | P( z d 30(.4)(.6) 32 36 SolvingfortheStockoutprobability (continued) Standardnormalprobabilitydistribution:Solvingforthe p y Stockoutprobability Step1: Convertx tothestandardnormaldistribution. z = ((x - P)/V = ((20 - 15)/6 )/ = .83 Step3: Computetheareaunderthestandardnormalcurve to the right of z =.83. totherightofz = 83 P(z > .83) = 1 – P(z < .83) = 1- .7967 Step2: Findtheareaunderthestandardnormal curvetotheleftofz=.83. z ,00 ,01 ,02 ,03 ,04 ,05 ,06 ,07 ,08 ,09 . . . . . . . . . . . ,5 ,6915 ,6950 ,6985 ,7019 ,7054 ,7088 ,7123 ,7157 ,7190 ,7224 ,6 ,7257 ,7291 ,7324 ,7357 ,7389 ,7422 ,7454 ,7486 ,7517 ,7549 ,,7 ,,7580 ,,7611 ,,7642 ,,7673 ,,7704 ,,7734 ,,7764 ,,7794 ,,7823 ,,7852 ,8 ,7881 ,7910 ,7939 ,7967 ,7995 ,8023 ,8051 ,8078 ,8106 ,8133 ,9 ,8159 ,8186 ,8212 ,8238 ,8264 ,8289 ,8315 ,8340 ,8365 ,8389 . . . . . . . . . . . P(z < .83) 37 Probability of a stock-out: P(x > 20) Area = 1 - .7967 Area = .7967 2033 = .2033 38 0 z .83 Estimatinglifeofalightbulb Answerkey y YouworkinQualityControlforGE.Lightbulblife y P(X<1470)=P(Z<2.65)=P(Z>2.65)=1P(Z<=2.65) hasanormaldistributionwith =2000hours&=200hours.What’sthe probabilitythatabulbwilllast b bilit th t b lb ill l t y A.between2000&2400 hours? y B.lessthan1470hours? =0.040 Z 39 X P V 1470 2000 200 2.65 y P(2000<X<2400)=P(0<Z<2)=0.472 Z X P V 2400 2000 200 2 .0 40 Exercises– Normaldistribution ExponentialProbabilityDistribution y Z=astandardnormalR.V. • Theexponentialprobabilitydistributionisuseful indescribingthetimeittakestocompleteatask. P(Z 1.43) P(Z ! 0.89) • Theexponentialrandomvariablescanbeusedto P(2.16 Z 0.65) Exe: X ~ normal, (a) (b) P ( X ! 17 ) (c) P ( X 22 ) P describesucheventsas: 30 V 6 ¾ Timebetweenvehiclearrivalsatatollbooth ¾ Timerequiredtocompleteaquestionnaire Time required to complete a questionnaire ¾ Distancebetweenmajordefectsinahighway P (32 X 41) 41 = .2033 42 ExponentialProbabilityDistribution ExponentialProbabilityDistribution:Example y Densityfunction: f ( x) 1 P ex / P ThetimebetweenarrivalsofcarsatAl’sfullservicegas pumpfollowsanexponentialprobabilitydistributionwith f ll i l b bili di ib i ih ameantimebetweenarrivalsof3minutes.Alwouldlike toknowtheprobabilitythatthetimebetweentwo successivearrivalswillbe2minutesorless. for x > 0, P > 0 whereP isthemeanofthedistribution. y Cumulativeprobabilities: P ( x d x0 ) 1 e xo / P wherex0 issomespecificvalueofx. 43 44 ExponentialProbabilityDistribution:some properties Graphicalrepresentation • Apropertyoftheexponentialdistributionisthatthe mean and standard deviation ɐ,areequal. mean,,andstandarddeviation, are equal f(x) P(x < 2) = 1 - 2.71828-2/3 = 1 - .5134 = .4866 .4 Thus, the standard deviation, s, and variance, s 2, for the time between arrivals at Al’s full-service p pump p are: .33 = = 3 minutes .2 2 = (3)2 = 9 .11 x • Theexponentialdistributionisskewedtotheright. 1 2 3 4 5 6 7 8 9 10 Time Between Successive Arrivals (mins.) • Theskewness measurefortheexponentialdistributionis2. 45 46 Relationshipamongdistributions Normal (X) P ,V 2 X ln Y eX Y X P Z ¦ F2 n i 1 0, 1 Zi 2 Chi-square ( F) n Lognormal (Y) P ,V Normal (Z) V 2 D Uniform(X) n / 2, E 2 D, E X D E D D E 1 Beta D, E 47 X ( E D )U D Uniform(U) 0,1 J,E n=2 D 1 Gamma U Weibull D, E X E ln l U J 1 Exponential(X) E