Download PHYSICS 2B EQUATION SUMMARY

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
PHYSICS 2B EQUATION SUMMARY
Permeability of free
space
μ0 = 4π E-7 H/m
Permittivity of free
space
ε0 = 8.8542 E-12 F/m
k = 8.99 E9 N m2/C2
Charge of the
electron
e = 1.602 E-19 C
Plank’s constant
h = 6.626 E-34 J s
Coulomb’s Law

1 q1 q2
F12 
(rˆ12 )
40 r122
F12  k
q1 q 2
r122
Definition of Electric
Field 
 F
E
q0
Electric field of a
point charge

1 q
E
(rˆ)
40 r 2
Ek
q
r
2
Definition of Electric
Flux


 E   E  dA
ΦE = E ΔA cos(θ)
summed over surface
area.
Gauss’ Law
Q

0
6/29/2017
Definition of Electric
Potential
PE
V 
q0
Force of magnetic
field on a charged
object

 
F  qv  B
F  qvB sin(  ) in
direction ┴ v & B
For any electric
field:


E  V
E s  
Ampere’s Law for
constant current
 
 B  d  0 I
V
in
s
direction of Δs
Law of Biot and
Savart
  0 i ds  rˆ
dB 
4 r 2
For a point charge
1 q
V 
40 r
Definition of
capacitance
q=CV
Ohm’s Law
V = IR
Power in Resistive
Circuit:
P = IV = I2R = V2/R
For a long straight
wire
Voltage across a
capacitor:
Vrms  I rms  C
0 I
2 r
BN
0 I
2R
For any capacitor:
q = CV
PE = ½ qV = ½ CV2
For a solenoid
For a parallel-plate
capacitor:
 qAˆ
 ˆ
E

A
0 A 0
(From Gauss’ Law)
 V
E  Aˆ
d
RC time constant:
  RC
  nIAB sin 
B   0 nI
Torque on a flat coil
Magnetic flux:


   B  dA
ΦB = B ΔA cos(θ)
summed over surface
area.
Faraday’s Law
Δ
E  N
Δt
1
From Faraday’s law:
ΔI
E  L
Δt
Capacitive
Reactance
1
XC 
2 f C
For a coil of wire
I peak  2 I rms
Self inductance
N
L
I
PE = ½ LI2
Force on a currentcarrying element

 
F  i LB
F = iLBsin(θ) in the
direction ┴ i and B
B
For a sinusoidal
voltage or current:
V peak  2 Vrms
Mutual inductance
N 
M  S S
IP
From Faraday’s law:
ΔI p
ES   M
Δt
Inductive Reactance
X L  2 f L
Voltage across an
inductor:
Vrms = Irms XL
Impedance of a
series RLC circuit:
Z  R 2  X L  X C 
2
 XL  XC 

R


  tan 1 
Resonance:
1
f0 
2 LC
Speed of light:
1
c
 0 0
565322397
PHYSICS 2B EQUATION SUMMARY
Doppler Effect for
Electromagnetic
waves:
v
1
c
  0
v
1
c
for v<<c this can be
written:
 v
f O  f S 1  
 c
For a thin spherical
lens or a mirror:
1 1 1
 
p q f
For a spherical
mirror:
f=½R
Index of Refraction:
c
n
v
Snell’s Law
n1 sin( 1 )  n2 sin(  2 )
Double slit
diffraction:
Bright fringes:
sin(θ) = m λ/d
Dark fringes:
sin(θ) = (m+½) λ/d
Single slit
diffraction:
Dark fringes:
sin(θ) = m λ/w
Diffraction grating:
sin(θ) = m λ/d
Gamma
1
 
1
6/29/2017
Time dilation
T   T0
Momentum of a
photon
h
p

Lorentz contraction
L
L 0

De Broglie
wavelength
h

p
Relativistic
momentum
p   mv
Heisenberg
Uncertainty
Principle
h
p x x 
4
h
p y y 
4
h
p z z 
4
h
E t 
4
Relativistic total
energy
E  mc 2
Relativistic kinetic
energy
KE  (  1)mc 2
Relativistic addition
of velocities
V  VCB
V AB  AC
V V
1  AC 2 CB
c
Spectral
wavelengths of
hydrogen:
1
1 
 1
 R 2  2 

n 
m
m, n = 1, 2, 3, …
Lorentz
transformations
x    x  vt
y  y
z  z
 vx 
t    t  2 
 c 
Energy levels in
Bohr Model
me 4 Z 2
En   2 2 2
2h  0 n
hf = Ei-Ef
Energy levels of a
bound particle
E=nhf n=0,1,2,3,…
Quantum
Mechanical model of
Atoms
Principle quantum
number n = 1, 2, 3 …
Orbital quantum
number
  0,1,..., n  1
magnetic quantum
number
m  ,...,2,1,0,1,2,..., 
ms  1 / 2
L  (  1 
Lz  m 
where:
h

2
Nuclear Structure
A=Z+N
Binding Energy =
(Mass defect) c2
Radioactive half life
N  N0 e t
.693

T1 / 2
Hubble’s Law
v=Hr
Energy of a photon
E  hf
Photoelectric effect
hf = KEmax + W0
v2
c2
2
565322397
PHYSICS 2B EQUATION SUMMARY
LEPTONS
Flavor
1
1
2
2
3
3
Particle
electron
electron neutrino
muon
muon neutrino
tauon
tauon neutrino
Sym. Q Mass*c2
Le
e
-1
.511 MeV 1
ν
0
<0.6 eV 1
μ-1
106 MeV 0
νμ
0
<0.6 eV 0
τ-1 1777 MeV 0
ντ
0
<0.6 eV 0
Lμ
0
0
1
1
0
0
Lτ
0
0
0
0
1
1
Q = charge (in units of 1 electron charge), L= Lepton number
QUARKS
Q = charge
c = charm
B = Baryon Number
t = topness
Generation
1
1
2
2
3
3
Name
Sym
Up
Down
Charm
Strange
Top
Bottom
u
d
c
s
t
b
S = strangeness
b = bottomness
Q
c
+⅔
-⅓
+⅔
-⅓
+⅔
-⅓
0
0
+1
0
0
0
S
0
0
0
-1
0
0
t
b
0
0
0
0
+1
0
0
0
0
0
0
-1
Mass
MeV/c2
5
10
1500
200
175000
43000
All Quarks have B = ⅓, All Leptons have B, c, S, t and b = 0. The masses of the quarks are in much
dispute; don’t take them too seriously.
SOME USEFUL MASSES:
Object
electron
proton
neutron
deuterium
earth
moon
sun
Kg
9.1093826E-31
1.67262171E-27
1.67492728E-27
u
5.4857990945 E-4
1.00727646688
1.00866491560
2.014102
MeV/c2
.511
938.3
939.6
5.98E24
7.35E22
1.99E30
Note:1 atomic mass unit = 1.66053886E-27 Kg = 931.494044 MeV/c2.
6/29/2017
3
565322397
Related documents