Download Solutions - hrsbstaff.ednet.ns.ca

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Circle Geometry Review Solutions
1. d 
 1  32  10  6) 2
 272  4 17  16.49
 3  (1)  6  10 
Midpo int : 
,
  (1, 2)
2 
 2
2.
8 x
 3, x  14
2
m AB 
10  (6)
4

 1
1 3
4
5 y
1
  , y  6  (14,6)
2
2
7
 3 1
 1 7
 3 
midpo int   ,   y       x       y  x  3
3
 2 2
 2 3
 2 
7
In order for (3,4) to be the center it must be on the line. Check y  (3)  3  4  could be center
3
3. m AB 
3
7
,  slope 
7
3
 6  7 5  (2) 
4. Need midpoint (center) to determine the length of the radius: 
,
  (6.5,1.5)
2 
 2
r  (6.5  6) 2  (1.5  5) 2  12.5
d  (6.5  3) 2  (1.5  (1)) 2  18.5
Since the distance from the center to the point (3, -1) is greater than the radius, the point is outside circle.
5. a) Remember that distance is measured perpendicularly to the chord and perpendicular bisector of
chord passes through center.
r 2  32  4 2  r  5  diameter  10cm
b) Think – the two chords could be on the same side of center or on opposite sides of center!
Let distance of one chord be a, let distance of other chord be b:
132  a 2  12 2  a  5
132  b 2  5 2  b  12
The chords could be: 12  5  17cm apart or 12  5  7cm apart
8
6. A sketch is always a good idea!
B(-2, 2)
  2 4 28
midpt AB : 
,
  (1,3)
2 
 2
 12  4 6  8 
midpt AC : 
,
  (8,1)
2 
 2
8 1
7
m segment :

1 3 2
12  2 14 7
m BC :


62
4 2
y
6
C(12, 6)
4
2
x
5
−2
−4
10
(8, -1)
(1, -3)
−6
−8
A (4, -8)
−10
Segment and BC have same slope, therefore parallel.
Measure of segment is half measure of BC.
d segment  (8  1) 2  (1  3) 2  53 d BC  (12  2) 2  (6  2) 2  212  2 53
15
7.
6
4
2
R(-6, 5)
−12
−10
−8
−6
−4
−2
U(-10, -7)
  10  12  7  1 
midpt SU : 
,
  (1,4)
2
2 

y
S(12, -1)
2
−2
−4
−6
−8
−10
−12
−14
−16
4
6
8
10
12
x
14
T(8, -13)
  6  8 5  13 
midpt RT : 
,
  (1,4)
2 
 2
The diagonals have the same midpoint, therefore they bisect each other.
8. You are told that triangle ABC is isosceles so you do not have to prove that. Let D be midpoint of AB,
E be midpoint of BC and F be midpoint of AC. Now prove triangle DEF is isosceles . . .
y
1 5 7  3 
D:
,
  (2,2)
2 
 2
 11  5 1  3 
E :
,
  (3,1)
2 
 2
 1  11 7  1 
F :
,
  (6,4)
2 
 2
8
A(1, 7)
6
F (6, 4)
4
D(-2, 2)
C (11, 1)
2
x
−5
B(-5, -3)
5
−2
10
E (3, -1)
−4
DE  (2  3) 2  (2  1) 2  34 EF  (6  3) 2  (4  1) 2  34 DF  (6  2) 2  (4  2) 2  68  2 17
Since only two of the three sides are the same length, the triangle DEF is isosceles.
9. a) x = 65 (1/2 central angle), z = 115(cyclic quadrilateral), y = 65 (subtended by same arc as x)
b) x = 55 (180 in right triangle subtended by diameter), y = 70 (congruent triangles and angles)
c) x = 55 (1/2 central angle which equals arc AB), y = 125 (cyclic quad), z = 30 (E also 55 as
subtended by same arc as x, then 180 in triangle), arc ED= 60 (twice inscribed angle z),
arc AE = arc BD = 90 (arcs total 360)
d) arc BC= 80 (twice inscribed angles at A), arc AC = 156 (twice angle B), arc AB = 124 (360 total)
10. a) 2 x 2  2 y 2  12 x  4 y  12  0
(circle because same stretch on x and y)
x 2  6x  y 2  2 y  6
( x 2  6 x  9)  ( y 2  2 y  1)  6  9  1
( x  3) 2  ( y  1) 2  16
 x  3 
  y  1
 4    4   1
2
2
and
r=4
( x, y )  (4 x  3, 4 y  1)
Domain: [-1, 7]
b) 16 x 2  9 y 2  64 x  54 y  1  0
Range: [-5, 3]
(ellipse because different stretch on x and y)
16 x 2  64 x  9 y 2  54 y  1
16( x 2  4 x  4)  9( y 2  6 y  9)  1  64  81
Center (-2, 3)
16( x  2) 2  9( y  3) 2  144
( x, y )  (3x  2, 4 y  3)
( x  2) 2 ( y  3) 2

1
9
16
Domain: [-5, 1]
minor axis 6
Range: [-1, 7]
major axis 8
 x  2   y  3
 3    4  1

 

2
11.
Center (3,-1)
2
  y  1 
  x  5 
 3    2  1




2
 x  52
2
2
2
 2 ( y  1) 
 ( x  5) 
or it could have been 


  1 (rationaliz ed )

2
 3 


( y  1) 2
1
9
2
2
2( x  5) 2  9 y  1  18

2( x 2  10 x  25)  9( y 2  2 y  1)  18  0
2 x 2  9 y 2  20 x  18 y  41  0
 x  2
2
12. 
 2( y  3)  1

 7 
2
2
2
1

2

THINK RECIPROCAL S :  ( x  2)   ( y  3)  1
7

1

Geometric Proofs:


1.
Include the given information in your proofs
State the reason for each line of the proof
Statement
AD and BE bisect each other
AC = CD
BC = CE
BCA  ECD
BCA  ECD
AB  DE
Reason
given
definition bisect
definition bisect
vertically opposite angles
SAS
CPCTC
Statement
AB  AC
AD  AE
BAE  CAD
BAE  CAD
ABE  ACD
Reason
given
given
common angle
SAS
CPCTC
Statement
AE bisects BAC
Reason
given
given
definition of bisect
common side
SAS
CPCTC
straight line
straight line
supplements to equal angles
2.
3.
AB  AC
BAD  CAD
AD = AD
BAD  CAD
ADB  ADC
ADB supplementary to 1
ADC supplementary to 2
1  2
4.
Statement
1  2
FE  AC
CE = CE
AE  CF
EB  FD
BEA  DFC
B  D
Reason
given
given
common side
segment addition
given
SAS
CPCTC
5.
Statement
D is the midpoint of CE .
CD = DE
AC  AE, AB  AF
Reason
given
definition midpoint
given
BC = FE
C  E
BCD  FED
segment subtraction of congruent parts
given
SAS
CPCTC
BD  FD
6.
Statement
AB  BC
B  90
CD  BC
C  90
B  C
BA  CD
BC = BC
ABC  DCB
BCA  CBD
Reason
given
definition perpendicular
given
Statement
1  2
B  E
BC  DE
CD = CD
Reason
given
given
given
common side
segment addition
AAS
CPCTC
definition perpendicular
right angles
given
common side
SAS
CPCTC
7.
BD  EC
BDA  ECA
BDA  ECA
8.
Statement
AB  BE
B  90
EF  BE
E  90
B  E
BC  DE
CD = CD
BD  EC
AD  CF
ABD  FEC
A  F
Reason
given
definition perpendicular
given
definition perpendicular
right angles
given
common side
segment addition
given
SAS
CPCTC
Related documents