Download pathania institue of mathematics

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
PATHANIA INSTITUE OF MATHEMATICS
PATHANIA INSTITUE OF MATHEMATICS
S.C.F 13 PHASE: 2 MOHALI, PH- 98145- 06093
S.C.F 13 PHASE: 2 MOHALI, PH- 98145- 06093
COMPLEX NUMBER
COMPLEX NUMBER
1.
Find the square root of i.
(a  i)
(a  1)
 p  iq, show that p 2  q 2 
.
2a  i
4a 2  1
2
2
1.
Find the square root of i.
2.
If
3.
If z = x + iy and  
2
(a  i) 2
(a 2  1) 2
 p  iq, show that p 2  q 2 
.
2a  i
4a 2  1
2.
If
3.
If z = x + iy and  
4.
1 i 
Find the least value of positive integer n if 
  1.
1 i 
4.
Find the least value of positive integer n if 
  1.
1 i 
5.
If z = x + iy, x , y real, prove that | x |  | y |  2 | z | .
5.
If z = x + iy, x , y real, prove that | x |  | y |  2 | z | .
6.
If (x + iy)3 = u + iv, show that
6.
If (x + iy)3 = u + iv, show that
7.
25

1 
Evaluate: i18     .
 i  

7.
 18  1  25 
Evaluate: i     .
 i  

|1  iz |
, show that |  | 1  z is purely real.
|z i|
|1  iz |
, show that |  | 1  z is purely real.
|z i|
n
u v
  4(x 2  y2 ).
x y
3
1 i 
n
u v
  4(x 2  y2 ).
x y
3
8.
Find the real numbers x and y if (x – iy) (3 + 5i) is conjugate of
-6 – 24i.
8.
Find the real numbers x and y if (x – iy) (3 + 5i) is conjugate of
-6 – 24i.
9.
If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that
9.
If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that
(a 2  b2 )(c2  d2 )(e2  f 2 )(g2  h 2 )  A2  B2 .
10.
Reduce the following to the standard form (a + ib):
(3  i 5)(3  i 5)
( 3  2i)  ( 3  i 2)
.
(a 2  b2 )(c2  d2 )(e2  f 2 )(g2  h 2 )  A2  B2 .
10.
Reduce the following to the standard form (a + ib):
(3  i 5)(3  i 5)
( 3  2i)  ( 3  i 2)
.
Solution
1.
4.
5.
2.
6.
3.
7.
8.
9.
10.
(a + ib) (c + id) (e + if) (g + ih) = A + iB
Related documents