Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
-1- Name:_______________________________ Geometry Rules! Chapter 4 Notes Period:______ Notes #22: Section 4.1 (Congruent Triangles) and Section 4.5 (Isosceles Triangles) Congruent Figures Corresponding Sides Corresponding Angles Triangle Angle-Sum Theorem If two ________ of one triangle are _____________ to two _________ in another triangle then the third angles in both triangles are _____________. Practice: 1.) If ∆CAT ∆DOG, then complete: (draw a picture first) mC _____ TCA _____ GD _____ O _____ TA = _____ ODG _____ 2.) ZAK JOE a) Name three pairs of corresponding angles: b) Name three pairs of corresponding sides: -1- -2- 3.) The two triangles shown are congruent; complete. (It will help to rotate the triangles first, to get them in corresponding positions) a) RAV _____ b) R _____ c) EV = _____ d) mA _____ e) NV _____ f) VRA _______ E N V R A Isosceles Triangles Isosceles Triangle Theorem ( ) If two sides of a triangle are congruent, then the angles opposite them are ___________. Converse of the Isosceles Triangle Theorem ( ) If two angles of a triangle are congruent, then the __________ opposite them are _________. -2- -3- Angle bisector in vertex angle of Isosceles Triangle: Equilateral Triangles Practice: Solve for x and y 4.) 5.) x x 7y - 5 3y + 7 40 y 6.) 7.) 64 x y 3x - 2 9 y 58 100 12 5x - 10 40 8.) In equilateral ∆XYZ, mX a b and mY 2a b . Find a and b. 9.) In equiangular ∆ABC, AB = 2x + y, BC = 6x – 2y, and AC = 10. Solve for x and y. -3- -4- 10.) What can you conclude from the picture? F 10 cm A 10 cm E 10 cm G 10 cm C B B 11.) Given: C is the midpoint of BD 1 2 Prove: A 2 1 AB CD D Reasons Statements 1.) 1.) 2.) 2.) Definition of Midpoint 3.) C AB BC 3.) 4.) 4.) 12.) B Given: 1 4 Prove: AB BC A 1 2 3 C 4 Reasons Statements 1.) 1.) 2.) 2.) 3.) 3.) Substitution 4.) 4.) -4- -5- Algebra Review: Collecting like terms Simplfy: 1.) x 2 3x 2 x 2 x 2.) 2 y 2 6 y 3 y 2 4 y 9 y 5 3.) 3x 2 8 x 4 x 2 2 x 5 x 2 4.) 5.) x2 y 3xy 5x 4 y 5xy 2 3x 2 y 6.) 2 xy 3xy 2 x2 5 y 4 xy xy 2 7.) 2 x 2 5 x 15 2 x 2 x 2 9 8.) 12 x 2 3x 5 3x 2 6 3x 7 x 2 16 y 2 5 y 4 7 y 5 y 2 10 -5- -6- Notes #23: Sections 4.2 and 4.3 (Methods of Proving Triangles Congruent) Q: How can we prove that two triangles are congruent to each other? A: Four ways: SSS, SAS, ASA, AAS SSS: _______-________-________ Postulate SAS: _______-________-________ Postulate ASA: _______-________-________ Postulate AAS: _______-________-________ Postulate -6- -7- Are the triangles congruent? If so, write the congruence and name the postulate used. Redraw your triangles so they line up You need three congruent pairs of sides/angles to follow: SSS, SAS, ASA, or AAS Look for “hidden” pieces in: - vertical angles - overlapping sides - congruent angles formed by parallel lines - bisected angles - ITT/Converse of ITT - midpoints 1.) 2.) V Q R P O W X U S T ______ ______ by ________ ______ ______ by ________ 3.) 4.) Z S B 80 5 in 7 in A X Y A B 5 in 7 in 80 C C R T ______ ______ by ________ ______ ______ by ________ 5.) 6.) E E G G F F D D H ______ ______ by ________ H F is the midpoint of DG and EH ______ ______ by ________ -7- -8- 7.) 8.) V A T M H U X W ______ ______ by ________ MT bisects AMH and ATH ______ ______ by ________ 9.) X Y Given: WX YZ , XY ZW Prove: WXY YZW Z W Reasons Statements 1.) 1.) 2.) 2.) 3.) 3.) 10.) Given: WX YZ , WX YZ X Y Prove: WXY YZW W Statements 1.) 1.) 2.) 2.) Reflexive 3.) 4.) XWY ZYW Z Reasons 3.) 4.) -8- -9- Factoring Review: 1. Collect like terms 2. Factor out any common terms. Practice: 1.) 5 x 2 5 x 10 2.) x 2 10 x 9 3.) 2 x 2 6 x 14 2 x 4.) 3x 2 5 x 3 x 2 3x 1 5.) 5 x 2 5 x 6.) 3 y 2 24 y 36 18 7.) 2 y 4 10 y 2 8.) 3x 2 18 x 24 -9- - 10 - Notes #24: More Proofs and Section 4.4 (Using Congruent Triangles), CPCTC ***_________________ parts of_______________ triangles are _____________ *** Are the triangles congruent? If so, write the congruence and name the postulate used. 1.) 2.) X X Y Z W Y Z W WX YZ , WX YZ WX YZ , XY ZW 3.) 4.) X W X Y Z Y Z W WX YZ , XY ZW WX YZ , XY ZW 5.) Complete: B a) ∆ABC __________ because _______ b) AB = ____ because ___________ A E C c) AC = EC because ___________. Then C is the midpoint of _________ by _______________________________. D d) A _____ because _________. Then AB ED because _______________________. - 10 - - 11 - Complete the proofs: follow these key steps 1. Re-draw and label your picture; mark congruencies 2. Find and list 3 congruencies: shared sides (reflexive) vertical angles alternate interior/corresponding angles (only when lines are ) angle bisectors midpoints ITT 3. State ∆ ∆ by SSS, SAS, ASA, or AAS 4. State part part by CPCTC 6.) Given: WX YZ , XY ZW X Y Prove: X Z Z W Statements Reasons 1.) 1.) 2.) 2.) 3.) _______ _______ 3.) 4.) 4.) - 11 - - 12 X 7.) Given: WX YZ , YX WZ Y Prove: XY ZW Z W Reasons Statements 1.) 1.) 2.) 2.) ________________ angles theorem 3.) 3.) 4.) 4.) _______ _______ 5.) 5.) 8.) Given: C is the midpoint of AD and BE D B C Prove: A D A Statements E Reasons 1.) 1.) 2.) 2.) Definition of Midpoint 3.) 3.) 4.) _______ _______ 4.) 5.) 5.) - 12 - - 13 - 9.) Given: CT bisects ACS and ATS A Prove: A S C T Statements S Reasons 1.) 1.) 2.) 2.) Definition of __________ ___________ 3.) 3.) 4.) 4.) 5.) 5.) 10.) Given: 1 2, X is the midpoint of WY Y Prove: WX YZ X Statements 1 2 Z W Reasons 1.) 1.) 2.) 2.) Definition of ______________ 3.) 3.) 4.) 4.) - 13 - - 14 - Factor Review: 1. 2. 3. Combine like terms Factor out the greatest common factor if possible How many terms? 2 terms – Factor using difference of two squares 3 terms – Factor using X and box 4 terms - Factor using grouping Two terms: 1. Factor our the greatest common factor : 2. If both terms are perfect squares factor into (a b)(a b) : 1.) x 2 49 3.) 3x 2 48 5 x 2 125 5( x 2 25) ( x 5)( x 5) 2.) 2 y 2 50 4.) 16 y 2 49 5.) x 2 225 6.) x 4 10 8 x 4 7.) r 4 16 8.) w2 144 - 14 - - 15 - Notes #25: Proof Review: 1.) In equilateral ABC , mA 2 x 4 y and mB x 5 y . Solve for x and y. 2.) Solve for x and y 80 x 8 y 50 12 3.) How can you prove triangles congruent? 4.) Solve for x and y y 3x + 5 120 7x - 3 30 7.) What does CPCTC stand for? 8.) KIM BEN Complete: a) IK _____ b) I _____ c) ENB _____ d) IK _____ - 15 - - 16 Complete each proof by filling in the blanks. A 1. B Given: AB || DE AB DE 3. Given: E is the mdpt of TP and MR C Prove: ∆ABC ∆EDC D 2. 2. Alt Int Angles 3. M 1. 1. Given 2. TE PE 2. ____________ theorem 3. 3. Given: AB CD AB || CD P 1. Given 4. ∆ 3. ∆ 4. 5. 2. R E Prove: TM PR E 1. _____________ T 5. D A 4. Prove: ∆ADB ∆CBD B 1. 1. 2. 2. Reflexive 3. 3. Alt Int. Angles C Given: 1 4; 2 3 M is the mdpt. of AB Prove: AC BD A C 1 D 2 3 M 1. 1. 2. AM BM 3. 3. ∆ 3. 4 B theorem 4. 4. 4. ∆ 4. - 16 - 17 5. Given: AD || ME MD || BE M is the mdpt. of AB Prove: MD BE A 1 D 2 M 3 1. 2. 3. 3. ∆ S 1 2 3 T 4 E B 2. 2 4 R Given: RS RT Prove: 3 4 4 1. 4. ∆ 7. 1. 1. Given 2. 3. ITT 3. 3 1 4 2 2. 4. 4. 4. 5. 5. G 6. Given: WO ZO XO YO Prove: W Z W Z X 1. 1. 2. 2. 3. ∆ 4. ∆ 3. 4. O 8. Prove: JG MK Y 1 Given: M is the mdpt of JK 1 2 2 J M K 1. 1. 2. KM JM 2. 3. JM JG 3. 4. 4. 17 18 Algebra Review Factoring Review: Three terms; 1. divide all terms by common denominator 2. Put quadratic in standard form; Coefficient of x2 must be 1. 3. find factors of last term that will add up to middle coefficient Practice: 1.) x 2 5 x 6 2.) x 2 10 x 9 3.) x 2 5 x 14 4.) x 2 2 x 8 5.) 5 x 2 5 x 10 6.) 3 y 2 24 y 36 7.) 2 y 2 10 y 8 8.) 3x 2 18 x 24 2x2 – 16x + 30 2(x2 – 8x +15) 2(x2 – 8x +15) 2(x – 5)(x – 3) 18 19 Notes 27: Section 4.6 (Congruence in Right Triangles) Section 4.7( Using Corresponding Parts of Congruent Triangles) HL: ___________ - __________ -( )Postulate Hypotenuse: Side opposite the right angle B Leg: Side adjacent to right angle C A Which of these triangles are congruent? Using the HL Postulate: 1.) _______ _______ by _______ A D B C 19 20 V 2.) _______ _______ by _______ U X W Given: CA ED, AD is the perpendicular bisector of CE . Prove: CBA EBD D C B A Statements 1. 2. 3. 4. 5. CBA and EBD CBA EBD are rt. E Reasons 1. Given 2. 3. Def. of bisector; Def. of midpoint 4. Def. of right triangles 5. 20 21 Proving Overlapping Triangles Congruent For #1-5, complete the following: a) Separate the overlapping triangles. Mark the side or angle that is/was overlapping. b) Mark the congruent segments and congruent angles. c) Are the triangles congruent? If yes, state the postulate used to state the triangle congruence (SSS, SAS, ASA, AAS, or HL) 1.) W Z Y X WX ZY , WXY ZYX 2.) A B D C AC DB 3.) M N L O L O, LMN ONM 21 22 4.) A E B D C AC EC , A E 5.) B A E D C (the triangles to examine are ABD and ABC ) AC BD For #6-9, complete the following proofs: 6.) Given: Prove: WX ZY , WXY ZYX W Z WXY ZYX Y X Statements Reasons 1.) 1.) 2.) 2.) 3.) 3.) 22 23 7.) Given: AC DB Prove: A B D C ABC DCB Statements Reasons 1.) 1.) 2.) 2.) 3.) 3.) 4.) 4.) 8.) Given: L O, LMN ONM M N Prove: LM ON L Statements O Reasons 1.) 1.) 2.) 2.) 3.) 3.) 4.) 4.) 23 24 9.) Given: AC EC , A E A E Prove: AD EB B D C Reasons Statements 1.) 1.) 2.) 2.) 3.) 3.) 4.) 4.) 24 25 Complete each proof by filling in the blanks. 1. O Given: B DB DN OD bisects BDN 1 2 3 4 S Prove: 3 4 5 6 D 1. DB DN 1. Given 2. OD bisects BDN 3. Given 3. 2. 4. 4. 5. OBD OND 5. 6. 6. 7. 7. 8. 8. 9. OBS ONS 9. 10. 10. N 2.Given: NGI NAI 1 2 Prove: GT AT 1. NGI NAI G N A 3 T 4 1 I 2 1. Given 2. 2. 3. 1 2 3. Given 4. GIN AIN 4. 5. 5. 6. 6. 7. 7. 8. GTN ATN 8. 9. 9. 25 26 3. Given: BU CH UC HB 1 2 Prove: UE HL U C 4. L 1 E B 2 H Given: UC || HB UB || HC BE CL Prove: 1 2 U C L 1 2 E B H 1. BU CH 1. Given 1. UC || HB 1. Given 2. UC HB 2. Given 2. 2. 3. 3. 3. 3. 4. BUC CHB 4. 4. UB || HC 4. Given 5. BCU CBH 5. 5. 5. 6. 1 2 6. Given 6. BUC CHB 6. 7. UCE HBL 7. 7. 7. 8. 8. 8. BE CL 8. Given 9. BUE CHL 9. 10. 10. 26 27 2 Algebra Review: Factoring quadratics with an x coefficient not equal to 1. 1. Put in standard form 2. Divide by greatest common factor if possible 3. Use X and box to factor 2 x 2 13x 20 Practice: 1.) 2 x 2 7 x 3 2.) 4 x 2 12 x 5 3.) 3x 2 7 x 6 4.) 15 x 2 7 x 2 5.) 6 x 2 7 x 3 6.) 2 x 2 5 x 3 27 28 Notes 28: Chapter 4 Review: Proof Review C 1.) Given: X is the mdpt. of CB CD AB D X A B Prove: AB DC 1. 2. _____ ____ 1. ___________ 2. _____ 3. 3. 4. 4. 5. 5. 2. 1. Given L M Given: LM JK LM || JK Prove: JM LK J LM JK; LM || JK 1. K Given 2. 2. Alt. int. angle thm. 3. 3. 4. _____________ 5. 4. 5. 3.) Given: WX ZY , WY ZX W X 3 4 Prove: WX ZY 1 Y 2 Z 1.__________________________ 1._________________________ 2.__________________________ 2._________________________ 3.__________________________ 3._________________________ 4.__________________________ 4._________________________ 5.__________________________ 5._________________________ 28 29 O 4.) Given: 1 3 Prove: ON OP N 1 2 P 3 1.__________________________ 1.__________________________ 2.__________________________ 2.__________________________ 3.__________________________ 3.__________________________ 4.__________________________ 4.__________________________ Are the triangles congruent? If so, write the congruence and name the postulate used. 5.) 6.) E E G G F F D D H H ______ ______ by ________ 7.) F is the midpoint of DG and EH ______ ______ by ________ 8.) V A T M H U MT bisects AMH and ATH W X ______ ______ by ________ 9.) ______ ______ by ________ 10.) V A B D C ______ ______ by ________ U X W ______ ______ by ________ 29 30 Algebra Review 1.) Factor: 3 x 2 6 x 12 2.) Factor: 5 x 2 125 3.) Factor: x 2 11x 18 4.) Factor: x 2 1x 12 5.) Factor: 6 x 2 7 x 3 6.) Factor: 3 x 2 4 x 4 7.) Factor: 3 x 2 5 x 2 8.) Factor: 3 x 2 15 x 30 31 9.) Factor: y 49 2 10.) Factor: x 4 x 32 2 31 32 Chapter 4 Study Guide: 1. Given: WX ZY , XY WZ X Y 3 4 Prove: X Z 2 1 W Z Statements 1. _________________________ 2. _________________________ _________________________ 3. _________________________ 4. _________________________ 5. _________________________ Reasons 1. ________________________ 2. ________________________ ________________________ 3. ________________________ 4. ________________________ 5. ________________________ X Y 3 2. Given: WX ZY , XY WZ 4 2 Prove: XY WZ W 1 Z Statements 1. _________________________ 2. _________________________ 3. _________________________ 4. _________________________ 5. _________________________ Reasons 1. ________________________ 2. ________________________ 3. ________________________ 4. ______ CPCTC__________ 5. ________________________ B D 3. Given: AB DE , C is the midpoint of BE C Prove: AC CD A Statements 1. _________________________ 2. _________________________ 3. _________________________ 4. _________________________ 5. _________________________ 6. _________________________ E Reasons 1. ________________________ 2. ________________________ 3. ________________________ 4. ________________________ 5. ________________________ 6. ________________________ N P 4. Given: NO PO, MO QO O Prove: M Q Statements 1. _________________________ 2. _________________________ 3. _________________________ 4. _________________________ M Q Reasons 1. ________________________ 2. ________________________ 3. ________________________ 4. ________________________ 32 33 ABC is equilateral. If mA 2 x y and mB 4 x y , solve for x and y. 5. 6. In XYZ , XY YZ . If mX 5x 10 and mZ 2x 44 solve for mX 7. Are the pairs of triangles congruent? If so, name the congruence and the postulate used. a) b) c) d) 8. a) Solve for x: b) Solve for y: B B 3y - 6 30 2x + 17 2y + 8 A 12 64 58 6x - 7 C C A 9. Factor:(Show work on separate sheet of paper) a) x 4 81 b) y 2 16 y 64 c) x 2 5 x 36 d) 3x 2 27 e) 4 x 2 25 f) 12 x 2 4 x 40 g) 3 x 2 7 x 4 h) 36 x 2 48 x 15 33