Download Exam II Practice II Winter 2017

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Math 71 Exam II Practice II
x3  8
x3 1

2 x 2  x  1 4 x 2  16
4
3
2
4
3
8
8
Factor a) 125 x  8 xy b) 3x  3 y c) 12 x  5 x  2 x
1) Multiply
2)
nE
1 1 1
 
for n. b) Solve
R  nL
a b c
x3
x 1
 2
Subtract 2
x  1 x  3x  2
Solve for x: t
x  2 1  x  3
3) Solve a)
4)
5)
I
3
6) Rationalize the denominator for a)
4
7) Simplify
b)
3 xy 3
e) factor
x 4  5x 2  4
4 x 3  4 x 2  36 x  36
f)
for a
5 2
3 22 3
if x is a nonnegative real number.
3x 3 8 x 2  3 x 5 y 3
8) A) Simplify by first writing the expression in the rational form. Assume x represents a nonnegative
4
real number. i)
3
x
2
x ii)
6
x
iii)
3
x
x
5
b) Simplify
9) Solve for x by first finding the impossible points:
1 i
2i
4
3
(2 x  x  4 x  1)  ( x 2  2)
10) Simplify a)
11) A) Divide
i 31
12) a) Simplify i)
b)
27
2
3
c) Multiply
5
27 x 13 y 21  5 27 x 21 y 14
20
20

1
x x9
i 60 c)
x2
ii)
3
x3
iii)
4
x4
if x is any real number. b) Simplify i)
x2
ii)
3
x3
iii)
4
x4
if x is a
nonnegative real number
13) Solve
2 x 2  10 x  1 by completing the square.
3x 2  x  2  0
14) Solve
15) A rectangular lawn measures 60 ft by 80 ft. Part of the lawn is torn up to install a sidewalk of uniform
width around it. The area of the new lawn is 2400 square feet. How wide is the sidewalk?
f ( x)  2  3x
1
1
1
 2
3
2
x y
4 x  4 b) xy
1
1
1
 2
1
2
2x  2
y
x
16) Find the domain of
17) A) Simplify
18) Compute the discriminant and find the number and type of solutions to 4 x  2 x  1  0
19) Squares with sides 2 in. are cut from the four corners of a sheet of metal, and the flops are folded
2
upward to form an open box. If the volume of the box is 32
the piece of metal?
20) Find the domain of
f ( x) 
3
4 x  11x  3
2
in 2
, what were the original dimensions of
Answer Key
( x  2)( x 2  2 x  4) ( x  1)( x 2  x  1) ( x 2  2 x  4)( x 2  x  1)
2) a)


(2 x  1)( x  1)
4( x  2)( x  2)
4(2 x  1)( x  2)
x(5x  2 y)( 25 x 2  10 xy  4 y 2 ) b) 3( x 4  y 4 )( x 2  y 2 )( x  y)( x  y) c) x 2 (4 x  1)(3x  2) e) Let u  x 2 ,
x 4  5x 2  4  u 2  5u  4  (u  1)(u  4)  ( x 2  1)( x 2  4)  ( x  1)( x  1)( x  2)( x  2) f) Since this is
1)
a 4-nomial, use grouping. Make sure to factor out the GCF first.
4 x 3  4 x 2  36 x  36  4( x 3  x 2  9 x  9)  4( x 2 ( x  1)  9( x  1)) 
4( x  1)( x 2  9)  4( x  1)( x  3)( x  3) 3)a) Multiply both sides by the LCD R  nL to get
I ( R  nL)  nE . Distribute I and move the terms containing n to one side to get IR  nE  nLI Factor
IR
out n from the right side and divide by the coefficient to get n 
b) Multiply both sides by the
E  LI
1
1
1
abc  abc  abc After clearing the denominators we obtain bc  ac  ab Isolate the
LCD abc:
a
b
c
terms containing a to get bc  ab  ac , Factor out a on the right side and divide both sides by b-c, we
bc
get bc  a (b  c )  a 
4) LCD=(x-1)(x+1)(X+2)
bc
x3
x  2 x2  x  6
x 1
x  1 x 2  2x  1

,

( x  1)( x  1) x  2
LCD
( x  1)( x  2) x  1
LCD
( x 2  x  6)  ( x 2  2 x  1)
x7

( x  1)( x  1)( x  2)
( x  1)( x  1)( x  2)
5) Square both sides (FOIL) to get
x  3  2 x  2  x  3 . Isolate the radical and divide both sides by -2 to get x  2  3 . Square both
2
2
sides again to get ( x  2)  3  x  2  9  x  7 x = 7. Check:
7  2  1  7  3 , yes. x=3.
4
3
6) a)
4
3xy
3 4
27 x 3 y
3

27 x y
4
27 x 3 y
xy
5 2
b)

3 2 2 3
3 2 2 3 3 2 2 3
3x 3 8 x 2  3 x 5 y 3  3x(2)3 x 2  xy3 x 2  (6 x  xy)3 x 2
7)
2
exponent form.
1
a) i)
3
x x  x 3 x 2  x 6  6 x 7  x 6 x _ ii)
5
1
2
30  10 6 15  5 6

6
3
8)Write each expression in the fractional
7
1

4
x
6
x
1 1

6
 x4
1
 x 12  12 x
iii)
2
(27) 3  (33 ) 3  3 2  9 c) 5 36 x 34 y 35  3x 6 y 7  5 3x 4 9)Domain: all real
numbers except 0 and -9. Multiply both sides by LCD  x( x  9) to get 20( x  9)  20 x  x( x  9) . This
x 5  (( x 5 ) 3 ) 2  x 6  6 x 5
3
b)
x 2  31x  180  0 . Factoring this, ( x  5)( x  36)  0 , we get x = -5, 36. 10) a)  i
1 3
12 x  9
 i 11) a) 2 x 2  x  4  2
5 5
x 2
12) a) i) x ii) x iii) x b) i) x ii) x iii) x 13)
simplifies as
2
b)
1
2
5
3 3
1
5
27
1 5
5
2 x  10 x  1  x  5 x   x 2  5x         ( x  ) 2 
 x 

2
2
2
2
4
2 2
2
2
2
1  (1)2  4(3)(2) 1  23 1  23i
5 3 3
2
x 
14) 3x  x  2  0  a  3, b  1, c  2  x 


2
2
2(3)
6
6
c)
15) Since you are removing 2x from the width and length, we get
move 2400 to the other side, we get
(60  2 x)(80  2 x)  2400 .
FOIL and
4 x 2  2800 x  4800  0 Divide each term by 4 to get
x 2  70 x  600  0 Factoring this will give x = 10 and x = 60.
But x =60 is impossible. X = 10 is the
answer. 10feet. 16) All real numbers less than or equal to 2/3. 17) Multiply each term LCD of 4(x-1) and
1 (4 x  1)
12( x  1)  1 12 x  11
4( x  1) 1
cancel out the denominator to get


1 4( x  1)
4( x  1)  2
4x  2
1(4 x  1) 
2( x  1) 1
3(4 x  1) 
b) The LCD is
x2 y2
18) The discriminant is
1 x2 y2
1 x2 y2

x y
x y
1
xy 2 1
x2 y 1
 2


2 2
2 2
2
( x  y )( x  y ) x  y
1 x y
1 x y
x y
 2
2
1
1
y
x
(2) 2  4(4)(1)  20 , which is a positive and non-square.
Two irrationals.
19)
After cutting off the corners, the length =width=x-4
Thus
Volume  2( x  4)( x  4)  32  ( x  4)( x  4)  16  x 2  8x  0
Solve this equation by factoring.
x  8x  0  x( x  8)  0  x  0, x  8
2
X=0 is impossible.
8m by 8m.
3
: set the denominator =0 to find all the impossible points:
4 x  11x  3
1
4 x 2  11  3  (4 x  1)( x  3)  0  x   , x  3 . All real numbers except -1/4, 3.
4
20)
f ( x) 
2
Related documents