Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
1 Index 1. Introduction 1 1.1. Some physical properties of tellurium 1 1.2. Relevant monographs and review articles 1 2-Preparation of the more important inorganic tellurium reagents 3 2.1. Tellurium tetrachloride 3 2.2. Tellurium dioxide 4 2.3. Alkali metal tellurides (Te2-Cat2+) 4 2.3.1. From the elements (2Na + Te - Na2Te) 4 2.3.2. From tellurium and reducing agents (Te→ Te2-) 4 2.3.3. From tellurium and non-reducing bases 5 2.4. Alkali metal ditellurides (Na2Te2) 5 2.4.1. From the elements (2Na+2Te→Na2Te2) 5 2.4.2 From tellurium and reducing agents 5 2.5 Hydrogen telluride (H2Te) 5 2.6 Sodium hydrogen telluride (NaHTe) 6 3. Preparation of the principal classes of organic tellurium compounds 7 3.1. Diorganyl tellurides 11 3.1.1. Symmetrical dialkyl tellurides 11 3.1.1.1. From alkali tellurides and alkylating agents 11 3.1.1.2. From bis(triphenylstannyl) telluride and alkylating reagents 15 3.1.2. Symmetrical diaryl tellurides 16 3.1.2.1. From alkali tellurides and non-activated aryl halides 16 3.1.2.2. From sodium telluride or sodium O,O-diethyl 18 phosphorotellurolate and arenediazonium fluoroborates 3.1.2.3 From potassium tellurocyanate and arenediazonium fluoroborates 19 3.1.2.4. From tellurium (IV) halides and arylmagnesium halides 19 3.1.2.5. From elemental tellurium and diarylmercury compounds 20 3.1.2.6 From diaryl ditellurides by extrusion of a tellurium atom 20 3.1.2.7. Bis-(phenylethynyl)telluride as Te2+ equivalent 21 3.1.3. Unsymmetrical tellurides 22 3.1.3.1. From sodium telluride and two different alkyl halides 22 3.1.3.2. From organyl tellurolates and alkylating agents 23 3.1.3.3. By addition of aryl tellurolates to electrophilic alkenes 27 2 3.1.3.4. From organyl tellurolates and arylating agents 28 3.1.3.5. From diorganyl ditellurides or arenetellurenyl halides and 28 organometallic reagents 29 3.1.3.6. Additional methods 3.1.4. Diorganyl tellurides by reduction of diorganyltellurium dihalides 32 3.2. Diorganyl ditellurides 34 3.2.1. From sodium ditelluride 34 3.2.1.1. From sodium ditelluride and alkylating agents 34 3.2.1.2. From sodium ditelluride and aryl halides 36 3.2.2. By oxidation of organotellurols or organotellurolates 37 3.2.3. By reduction of organotellurium trichlorides 39 3.2.3.1. Reduction of -carboxyalkyltellurium trichlorides 39 3.2.3.2. Reduction of -alkoxyalkyltellurium trichlorides 40 3.2.3.3. Reduction of aryltellurium trichlorides 40 3.2.4. Diaryl ditellurides from aryl boronic acids 41 3.3. Organyl tellurols 42 3.4. Bis-organyl telluromethanes 43 3.5. Organyl tellurium trihalides 44 3.5.1. Organyltellurium trichlorides from tellurium tetrachloride and 44 organic substrates 3.5.1.1. From tellurium tetrachloride and ketones and carboxylic 44 anhydrides 3.5.1.2. From tellurium tetrachloride and alkenes 44 3.5.1.3. From tellurium tetrachloride and arenes 46 3.5.1.4. From tellurium tetrachloride and arylmercury chlorides 47 3.5.2. By chlorinolysis of diorganyl ditellurides 48 3.5.3. Organyltellurium tribromides and triiodides by halogenolysis of the 48 corresponding ditellurides 3.5.4. Additional method. Preparation of organyltellurium trichlorides and 49 tribromides by the reaction of tetraorganyltin compounds with tellurium tetrachloride and tetrabromide 3.6. The products of the hydrolysis of aryl tellurium trihalides 50 3.7. Aryl tellurenyl halides 51 3.8. Aryl Tellurenyl pseudohalides. aryl tellurocyanates 53 3.9. Diorganyl tellurium dihalides 53 3.9.1. From elemental tellurium 53 3.9.2. From tellurium tetrahalides (or tellurium dioxides) 54 3 3.9.2.1. With ketones and carboxylic acid anhydrides 54 3.9.2.2. With alkenes 54 3.9.2.3. With arenes 54 3.9.2.4. With arylmercury chlorides 55 3.9.2.5. With arenediazonium salts 55 3.9.3. From organyltellurium trihalides 56 3.9.3.1. With ketones 56 3.9.3.2. With alkenes 57 3.9.3.3. With arenes 58 3.9.3.4. With organylmercury chlorides 58 3.9.4. By addition of halogens to diorganyl tellurides 59 3.9.5. Additional methods 60 3.9.5.1. Reaction of elemental tellurium with arenediazonium salts 60 3.9.5.2. Reaction of TeO2/LiCI with aryl hydrazines 60 3.9.5.3. Reaction of diaryl ditelluride with arenediazonium salts/CuCl2 60 3.10. Diorganyl telluroxides 61 3.10.1.Hydrolysis of diaryltellurium dihalides 62 3.10.2. Oxidation of diaryl tellurides 62 3.11. Telluroesters 62 3.12. Aryl telluroformates 65 3.13. Telluroglucopyranosides 66 3.14. Water soluble diorganyl tellurides 66 3.15. Dihaloaryltelluro cyclopropanes 67 3.16. Vinylic tellurides and ditellurides 67 3.16.1. Starting from nucleophilic tellurium 67 3.16.1.1. Addition of alkali tellurides to acetylenes 67 3.16.1.2. From organyltellurols or tellurolates and terminal acetylenes 69 3.16.1.3. From organyl tellurolate (and telluride) anions and vinyl 74 bromides 3.16.1.4. From vinylic tellurolate anions and alkyl halides 75 3.16.1.5. From organotellurolate anions and activated vinylic halides 76 3.16.1.6. From organyl tellurolates and electrophilic acetylenes 78 3.16.1.7. Tanden vicinal difunctionalization of alkynes 79 3.16.1.8. Telluroacylation of terminal alkynes 80 4 3.16.2. Starting from electrophilic tellurium 80 3.16.2.1. By addition of tellurium tetrahalides and aryltellurium trihalides 80 to acetylenes 3.16.2.2. From organyltellurenyl halides and vinylic Grignard reagents 82 3.16.2.3. From vinyltellurenyl iodides and Grignard reagents 83 3.16.3. Via radical reactions 83 3.16.4.Reduction of acetylenic tellurides 85 3.16.5.Vinylic tellurides via olefination reactions 86 3.16.5.1.Horner-Emmons route 86 3.16.5.2. Wittig route 87 3.16.6. Vinyl tellurides via borane chemistry 89 3.16.7. Telluro (seleno)ketene acetals, 1-seleno-2-telluro-ethenes, 90 telluro ketene acetals, telluro (stannyl)-ketene acetals and telluro(thio)ketene acetals 3.16.8. The behaviour of vinylic teIlurides toward several reagents and 99 reaction conditions used in organic synthesis 3.17. Acetylenic tellurides 103 3.17.1. From nucleophilic tellurium reagents 103 3.17.1.1. Sodium ethynyl tellurolates 103 3.17.1.1.2. Lithium alkyl and ethynyl tellurolates 103 3.17.2. From electrophilic tellurium reagents 104 3.17.2.1. From alkynyl Grignard and lithium compounds and organyl 104 tellurenyl halides 3.17.2.2. From tellurium tetrachloride and alkynyllithium compounds 106 3.17.3. Synthesis of internal acetylenes from vinylic tellurides 107 3.18. Allenic and propargylic tellurides 107 4. Tellurium in organic synthesis 110 4.1. Reductions 110 4.1.1. Reduction of carbonyl compounds 110 4.1.1.1. With hydrogen telluride 110 4.1.1.2. With phenyltellurol 110 4.1.1.3. With diisobutyl telluride/titanium (IV) chloride 112 4.1.1.4. With sodium telluride in 1-methyl-2-pyrrolidinone 112 4.1.2. Selective reduction of -unsaturated carbonyl compounds 113 4.1.3. Reduction of conjugated arylalkenes and arylalkynes 114 4.1.4. Reduction of imines and enamines 115 5 4.1.5. Reductive desulphuration of aromatic thioketones 116 4.1.6. Reduction of nitro compounds 116 4.1.7. Reduction of other nitrogenated compounds 120 4.1.8 Deselenylation of -seleno carboxylic compounds 122 4.1.9. Deoxygenation of oxiranes with alkali O,O-dialkyl phosphorotellurolates 4.1.10. Reductive opening of oxiranes with sodium hydrogen telluride and sodium telluride 4.1.11. Correlate reaction-tellurium-mediated resolution of racemic allyl alcohols 4.1.12. 1,2-Elimination in vicinal disubstituted substrates 123 4.1.12.1. Debromination of vic-dibromides with tellurium reagents 127 4.1.12.2. Desulfonation of vic-dimesylates and vic-ditosylates 131 4.1.13. Reductive fission of carbon-heteroatom bonds 132 123 125 127 4.1.13.1. Reductive removal of electronegative substituents from 132 ketones, acids and derivatives 4.1.13.2. Dehalogenation of polyhalogenated organic compounds 136 4.1.13.3. Reductive removal of tertiary nitro groups 136 4.1.13.4. Reductive dealkylation of quaternary ammonium salts 137 4.1.13.5. Reductive desulphonation of -ketosulphones 137 4.1.13.6 Desulphonylative condensation of -cyanosulphones with aldehydes 4.1.13.7. Correlate reaction - Desulphonylation of -nitrosulphones 138 139 4.1.13.8. Monodesulphuration of diaryl thioketals and bis-sulphenylated 139 -dicarboxyl compounds, diorganyl trisulfides and disulfides 4.2. Tellurium-mediated formation of anionic species and their reactions 143 with electrophiles 4.2.1. Reformatsky-type reactions 143 4.2.2. Knoevenagel-type reaction 144 4.2.3. Pinacol reaction 145 4.2.4. Alkylidenation of aldehydes and cyclopropanation of 145 unsaturated carbonyl compounds with dibromomalonic esters 4.2.5. Telluride-assisted sulphenylation and sulphonylation reactions 146 4.2.6. Telluride-mediated aldehyde methylenation 148 4.2.7 Miscellaneous 149 4.3. Deprotection of organic functionality by tellurium reagents 150 4.3.1. Regeneration of carboxylic acids:cleavage of carboxylic esters 150 4.3.1.1. Alkyl carboxylates 151 6 4.3.1.2. Phenacyl carboxylates 152 4.3.1.3. Allyl carboxylates 152 4.3.1.4. 2-Haloethyl carboxylates 153 4.3.2. Regeneration of Phenols 154 4.3.2.1. Cleavage of aryl carboxylates and carbonates 154 4.3.2.2. Cleavage of aryl haloacetates 155 4.3.2.3. Cleavage of phenyl allyl ethers 156 4.3.3. Regeneration of amines by cleavage of trichloro-t-butylcarbamates 156 4.4. Oxidation of organic substances by means of tellurium reagents 157 4.4.1. Bis(p-methoxyphenyl) telluroxides as a mild and selective oxidizing 157 reagent 4.4.1.1. Conversion of thio- and selenocarbonyl compounds to their oxo 157 analogues 4.4.1.2. Conversion of tertiary phosphines to tertiary phosphine oxides 159 4.4.1.3. Conversion of phenyl isothiocyanate to diphenylurea 159 4.4.1.4. Conversion of thiourea to ureas 159 4.4.1.5. Conversion of thiols to disulfides 159 4.4.1.6. Conversion of o- and p-diphenols to quinones 160 4.4.1.7. Conversion of acylhydrazines to acylhydrazides 160 4.4.1.8. Conversion of N-phenylhydroxylamine to nitrosobenzene 160 4.4.1.9. Conversion of benzophenone hydrazone diphenyldiazomethane 4.4.2. Polymer-supported bis(p-methoxyphenyl) telluroxide to 160 161 4.4.3. Bis(p-methoxyphenyl) telluride as a mediator in an electrolytic process 4.4.4. Bis(p-methoxyphenyl) tellurone 162 4.4.5. Sodium tellurite as oxidizing agent for thiols 164 4.4.6. TeCl4 promoted oxidation of trialkylphosphites 165 4.4.7. Arenetellurinic anhydrides 166 4.4.8. Reaction of oxidizing tellurium reagents with the C=C bond 168 163 4.4.8.1. Epoxidation of olefins catalyzed by polystyrene-supported 168 tellurinic acid 4.4.8.2. Diacetoxylation of olefins 169 4.4.8.3. Methoxytellurenylation and dimethoxylation of olefins 173 4.4.8.4. Aminotellurinylation of olefins and related reactions 174 4.5. Organotellurium-based ring closure reactions 178 4.5.1. Tellurolactonization of unsaturated carboxylic acids 179 7 4.5.1.1. With aryltellurium trichlorides 179 4.5.1.2. With benzenetellurenyl nitrobenzenesulphonate 180 4.5.1.3. With diaryl tellurium dihalides 180 4.5.1.4. Tellurolactonization of -allenic acids with phenyltellurenyl 181 chloride 4.5.1.5. Reductive detelluration of tellurolactones 181 4.5.2. Cyclotelluroetherification of allylphenols 4.5.2.1. With aryltellurinyl acetates unsaturated alcohols and 183 183 4.5.2. With aryltellurium trichlorides 184 4.5.2.3. With benzenetellurenyl nitrobenzenesulphonate 185 4.5.2.4. With TeO2/HOAc/LiCl or TeO2/HCl 186 4.5.2.5. With diaryl tellurium dihalides 187 4.5.2.6. Synthetic utility of the telluroetherification reactions 187 4.5.3. Tellurocyclofunctionalization of alkenylsubstituted -dicarbonyl 188 compounds 4.5.4. Tellurocyclization of olefinic carbamates 190 4.6. Conversion of organotellurium compounds into tellurium-free organic compounds 4.6.1. Detelluration of organotellurium compounds with the formation of new C-C bonds (carbodetelluration) 4.6.1.1. Synthesis of biaryls by Raney-Ni catalyzed homocoupling of diaryltellurium dichlorides and aryltellurium trichlorides 4.6.1.2. Pd(0) catalyzed homocoupling of diorganyl tellurides (and ditellurides) 4.6.1.3. Correlate reactions 191 4.6.1.4. Olefin arylation by Pd(II) catalyzed carbodetelluration of aryltellurium compounds 4.6.1.5. Pd(II) catalyzed cross-coupling reactions of aryl tellurides with alkenes 4.6.1.6. Ni(II) or Co(II) Catalyzed cross-coupling of Grignard reagents with organic tellurides 4.6.1.7. Palladium and copper catalyzed cross-coupling of organotellurium dichlorides with organostannanes and organoboronic acids. 4.6.1.8. Palladium catalyzed cross-coupling of organo-tellurium compounds with hypervalent iodonium salts 4.6.1.9. Detellurative carbonylation of organotellurium compounds: preparation of carboxylic acids 4.6.1.10. Synthesis of enones and cyclopropanes from bis(oxoalkyl)tellurium dichlorides 4.6.1.11. Conversion of telluroesters into ketones 193 4.6.2. Replacement of the tellurium moiety by other functionalities 198 191 191 191 192 194 194 194 195 196 197 198 8 4.6.2.1. By Amino Group - Allylic amine by imination of allylic tellurides 198 4.6.2.2. By Hydroxy Group - Hydrolysis of telluroesters to carboxylic 199 acids and esters 4.2.2.3. By halogens 199 4.6.2.4. By the methoxy group 206 4.6.2.5. Reductive detelluration of tellurides by triphenyltin hydride 208 4.7. Synthesis of olefins 210 4.7.1. By telluroxide elimination 210 4.7.2 Correlate method: reaction of alkyl phenyl tellurides with 214 chloramines-T 4.7.3. From telluronium ylides 215 4.7.3.1. Stabilized telluronium ylides 215 4.7.3.2. Semi-stabilized and non-stabilized telluronium ylides 218 4.7.3.3. Correlate reaction: the reaction of telluronium salts with carbonyl 222 compounds mediated by organolithium reagents - formation of secondary alcohols 4.7.4. Tellurium-catalyzed decomposition of -lithiated benzylic 224 sulphones into 1,2-diarylethylenes 4.8. Transmetallations reactions 227 4.8.1. Lithium tellurium exchange: generation of organolithium reagents 226 4.8.1.2. Acyl- and aroyllithim compounds 233 4.8.1.3. Heterosubstituted methyllithium compounds 234 4.8.1.4. Ferrocenyltellurium derivatives 236 4.9. Reactivity and synthetic applications of vinylic tellurides 237 4.9.1. Vinylcuprates by copper-tellurium exchange 237 4.9.1.1. Conjugate addition to enones 237 4.9.1.2. Conjugate addition of higher order cyanocuprates to enone, 240 followed by O-functionalization 4.9.1.3. Reaction with epoxides 243 4.9.1.4. Reaction with bromoalkynes 244 4.9.1.5. Synthesis of (-)-Macrolactin A 245 4.9.2. Tellurium-zinc and tellurium-alumminum exchange 245 4.9.3. Coupling reactions 248 4.9.3.1 Pd(II) catalyzed homocoupling of vinyl tellurides 248 4.9.3.2. Pd(II) catalyzed cross-coupling of vinylic tellurides with alkenes 249 4.9.3.3. Ni(II) or Cu(I) catalyzed cross-coupling of vinyl tellurides with 250 Grignard reagents 9 4.9.3.4. Pd(II) and Ni(II) catalyzed Sonogashira type cross-coupling of 252 vinyl tellurides and vinyl tellurium dichlorides with terminal alkynes 4.9.3.5. Pd/Cu catalyzed cross-coupling of vinylic tellurides with organyl 254 zinc reagents 4.9.3.5. Detellurative carbonylation of vinylic tellurides 256 4.10. Free radical chemistry 258 4.10.1. Telluride ion-promoted coupling of allylic halides 258 4.10.2. Organyl tellurides as exchangers of carbon radicals 259 4.10.2.1. Tellurium-mediated addition of carbohydrates to olefins 259 4.10.2.2. Intramolecular radical cyclization 260 4.10.3. Reactions of tetraorganyl tellurium with acetylenes 262 4.10.4. Telluroesters as source of acyl radicals 263 4.10.5. Aryl telluroformates as precursors of oxyacyl and alkyl radicals 268 4.10.6. Aryltelluroformates as precursors of selenium containing 268 heterocycles 4.10.7. Allyloxy and 2-propargyloxy alkyl tellurides as precursors of 269 tetrahydrofuran derivatives 4.10.8. Telluroglycosides as source of glycosyl radicals 270 4.10.9. Radical mediated group transfer imidoylation with isonitriles 271 4.10.10. 273 Three component coupling of silyltellurides, carbonyl compounds and isocyanides 4.10.11. Synthesis of substituted quinones via organotellurium compounds 4.10.12. Thiotelluration of vinyl cyclopropanes. Thio and selenotelluration of acetylenes 4.10.13. Perfluoroalkyltelluration of terminal olefins and alkynes 275 277 279 4.10.14. Synthesis of indole derivatives via radical cyclization of N-(ortho 280 ethynylbenzene)-phenyltelluro trifluoro acetimidates 4.10.15. Organotellurium compounds as initiators for controlled living 281 radical polymerization 5. Telluroheterocycles 283 5.1. Tellura-3,5-cyclohexanedione dichlorides (3,5-dioxotellurane-1,1- 283 dichlorides 5.2. Oxa and 1-thia-4-telluranes 283 5.3. Tellurophenes 283 5.3.1. Preparation 284 5.3.1.1. From alkali metal tellurides 284 5.3.1.2. From tellurium tetrachloride 285 5.3.1.3. From 1,4-dibutyltellurobutadiene 285 10 5.3.1.4. From butyltellurobutenines 286 5.3.2. Reactions of tellurophene 287 5.3.2.1. Via 2-lithiotellurophene-2-substituted derivatives 287 5.3.2.2. Formylation 287 5.3.2.3. Acetylation 287 5.3.2.4. Chloromethylation 288 5.3.2.5. Acetoxymercuriation 288 5.3.2.6. Modifications of the functionalized tellurophenes 288 5.3.2.7. Formation of complexes 289 5.3.2.8. Removal of tellurium from the ring 289 5.4. 1-Benzotellurophenes 289 5.4.1. Preparation 289 5.4.1.1. From tellurium 289 5.4.1.2. From TeO2 290 5.4.1.3. Via cyclization of ortho acetyl or formyl substituted phenyl telluro 291 compounds 5.4.1.4. From o-phenylethenyl tellurium trichloride 292 5.4.2. Reactions of 1-benzotellurophene dihydrobenzotellurophene 5.4.3. Ring cleavage of the tellurophene ring and 3-oxo-2,3- 292 294 5.5. Benzotellurepines 295 5.5.1. Preparation 295 5.5.2. Reactions 297 5.6. 2-Benzotellurophenes 297 5.6.1. Preparation 297 5.7. Telluro[3,4-c]thiphene 298 5.7.1. Preparation 298 5.8. Dibenzotellurophenes 299 5.8.1. Preparation 299 5.8.1.1. From tellurium 299 5.8.1.2. From tellurium dichloride 300 5.8.1.3. From tellurium IV halides 300 5.8.1.4. From bis[2,2´-biphenyldiyl]tellurium 301 5.8.2. Reactions 301 5.8.2.1. Halogenation 301 11 5.8.2.2. Cleavage of Te-C bond 302 5.9. Naphtothiatellurole, Naphtoselenatellurole, Naphtoditellurole 302 5.9.1. Preparation 302 5.10. 2H-1,3-Ditelluroles 303 5.10.1. Preparation 303 5.10.2. Reactions 304 5.11. Tetratellurafulvalenes 305 5.11.1. Preparation 305 5.12. Tellurin and derivatives 4-H-tellurins and 4-oxo-4-H-tellurins 306 (telluropyran-4-ones) 5.12.1. Preparation 306 5.12.2. Reactions 308 5.13. 2H-1-Benzotellurin 309 5.13.1. Preparation 309 5.14. 4H-1-Benzotellurins and 4-oxo-4H-benzotellurins 309 5.14.1. Preparation 309 5.15. Telluroxanthenes/Telluroxanthones and derivatives 310 5.15.1. Preparation 311 5.15.2. Reactions 311 5.16. Phenoxatellurins 313 5.16.1. Preparation 313 5.17. Phenothiatellurins/Phenoselenotellurins 314 5.17.1. Preparation 314 5.18. Telluranthrenes 315 5.18.1. Preparation 315 5.18.1.1. From tellurium 315 5.18.1.2. From sodium telluride 316 5.19. Bis-thieno-1,4-ditellurins 317 5.19.1. Preparation 317 5.20. 1,4-Tellurino-1,4-tellurins 317 5.20.1. Preparation 317 5.21. Benzene fused heterocycles containing tellurium, selenium and 318 sulfur 5.21.1. Preparation 318 5.22. 1,5-Ditelluracyclooctane and 5H,7H-dibenzo[b,g][1,5]tellurothiocin 319 12 5.22.1. Preparation 319 5.23. Ditellurane derivatives 320 5.23.1. Preparation 320 5.24. Reductive dimerization of telluro- and selenoxanthone 321 5.25. Tellurosteroids 322 5.26. 21,21-Dihalo-21-telluroporphyrin 322 6. Toxicology of organotellurium compounds 326 7. Pharmacology of organotellurium compounds 328 7.1. Chemopreventive activity 329 8. Miscellaneous 332 8.1. Some additional applications of TeCl4 332 8.1.1. Preparation of -methylene ketones 332 8.1.2. Olefin inversion by syn-chlorotelluration/anti-dechlorotelluration 332 8.1.3. TeCl4 as a catalyst for dithioacetalization and ketalization 333 8.1.4. TeCl4 as reagent for the conversion of alcohols to alkyl chlorides 334 and as a Lewis acid catalyst for aromatic alkylation 8.1.5. TeCl4-promoted rearrangement of cycloheptatrienes to benzylic alcohols 8.1.6. TeCl4 as catalyst for cationic oligo- and polymerization reactions 335 8.2. -Hydroxyalkylation of -unsaturated compounds 336 8.3. Conversion of allylsilane into allylamines via phenyltellurinylation 336 335