Download Fall Final Answers

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Fall Final Answers
Chapter 2:
1. a. About 3.25
b. undefined c. -1 d. 3
e. does not exist
f. 2
h. 
i. does not exist
j. -2
k. 
l. 0
m. x = -3 removable, x = -1 non-removable, x = 0 removable, x = 2 non-removable
n. because lim f(x)  lim f(x)
x2
2. D
g. 
x2
3. A
4. B
5. E
5. f(c) is defined, lim f(x) exists, lim f(x) = f(c)
xc
6. A
9. a. 1
xc
7. x = -2
b. 3
8. a. DNE
b. 75
c. DNE b/c lim f(x)  lim f(x)
x2
lim f(x) does not exist
c. 6
D. 
d. f(2) = 1 ; Not continuous because
x2
x2
10. D
11. D
Chapter 3:
1. 2x + 2
4.
8
x
2. 5
4  3y
3x  2y
5. y  
3
8. a. 3x2 – 6x
b.
2x 3  2
x
3
3. B
6. 48(2x + 3)2
c.
2
(x  1)
7. E
d.
2
4
4
9x
e.
3
f. 12x3 – 18x2 + 32x – 14
1

g. 5 x 2  
x

i. 2sin(2x) – 4cos(x)sin(x)
j.  3 csc(3x) cot(3x)  3 csc2 (3x)
l. 5cot x ( csc2 x) ln(5)
m.  2x csc2 (sin(x2 ) cos(x2 ))
o.
3x 4
 2x ln(x3  1)
x3  1
r.
1 3x
(e  e  3x ) 1 / 2 (3e3x  3e  3x )
2
9.
d2 y
dx
2

1 
 2x 

x2 

p. 1 + 2tan(x)
1
 1
 2y 3 (6  2x) 2  2y 2 at  3,  =
8
 4
2x
3 (x 2  1) 2
3
h. -9sin(3x + 1)
n. y' 
k.
5  2xy3
1
3x
3x2 y 2  3
q. exe-1
tan 3
sec 2 3
s. e
10. m = 2/5
t.
k = 8/5
3x 2 e x  2  x 3 e x  2
(e x  2 ) 2
11. A
12. C
13. C
17. dV/dt = 0.1(SA)
14. A
15. C
16. dA/dt = -7.5cm2/sec
18. C
Chapter 4
1. D
2. a. -1, 1 (Hole at 0) b. x = 2, x = -2
5. C
6. B
c. y = 1
3. 31,250
4.  7 , 7 


2
2
7. B
9. Yes:
10. Yes
x=a
x=m
11. Absolute Maximum = 16/3
12. a. b/c f’(x) goes from + to – at x = -1/2
b. b/c f’(-3) = 0 you have a horizontal tangent but f’(x) goes from + to + at this x – value so it is not an
extrema
c. b/c in the interval (1,  ) f(x) is increasing b/c f’(x) > 0
13. E
14. C
15. A
16. B
17. a. x = -3 neither, x = 1 relative minimum, x = 0 relative maximum
b. 3 points of inflection because f’(x) goes from increasing to decreasing or decreasing to increasing at
each of these points.
c. y – 7 = 3(x + 2)
d. Increasing (,0)  (1, ) because f’(x) > 0 ; Decreasing (0,1) because f’(x) < 0
e. These are approximate values: Concave up: (3,1.4)  (0.6, ) b/c f’(x) is increasing
Concave down: (,3)  (1.4,0.6) b/c f’(x) is decreasing
18. 123 2
19. 64 or 65 players
Related documents