Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Advanced Higher Mathematics Unit 2 Complex Numbers 1 1. 2. If a 1 i, b 2 i, c 2 3i, express in the form x iy : (i) ab (ii) (v) a2 b2 (vi) (ix) b a (x) (iii) ab 1 a b ac (vii) (xi) a 2c 1 ab ab c2 (iv) (viii) (xii) (a b)c 2 a b (a b) 2 Solve the following equations, giving the roots in the form x iy (where either x or y may be zero). (i) (iii) x 2 4 x 20 0 x 2 4x 7 0 (ii) (iv) x 2 36 0 x 2 2ix 2 0 3. If z x iy , write down the complex conjugate, z , and express 4. If z 1 i, express z in the form x iy , and hence evaluate zz . 5. If x iy 3i , find x and y. 2i 6. If a ib 1 , show that (a 2 b 2 )( x 2 y 2 ) 1. x iy 7. If z cos i sin , find the value of 8. If z cos i sin , find the values of z 9. Find the modulus and argument of: (i) 1 i 3 4i . 1 i 10. Find 11. 3i . Find Arg 1 i (ii) z in the form x iy . z 1 . z 1 1 and z . z z 3 5i (iii) 2 3i 12. Find 1 i 13. If z 1, describe the locus of the point ( x, y ) , where z x iy. 14. Evaluate 15. Find the modulus and argument of 16. 1 i Find Arg , 3 i (i) (ii) 3i . 1 i . 7i 1 3i . 8i By finding the arguments and subtracting. 1 i By first writing in the form a ib. 3i 17. Simplify cos i sin cos i sin . 3 3 6 6 18. 2 2 Simplify cos i sin cos i sin . 5 5 5 5 19. Simplify cos i sin . 6 6 20. Simplify cos 2 i sin 2 . cos i sin 21. Simplify cos 3 i sin 3 . cos 2 i sin 2 22. 1 i 3 . Evaluate 2 23. Evaluate 1 i . 2 3 3 6 24. Expand cos 4 i sin 4 by De Moivre’s Theorem. Use your result to express cos 4 as a polynomial in cos . 4 [Write cos 4 i sin 4 cos i sin . ] 25. By writing cos 5 i sin 5 cos i sin , express 5 (i) cos5 in terms of cos (ii) sin 5 in terms of sin . 3 26. 3i . Evaluate 2 27. (a) If z cos i sin , show that 1 1 2 cos and z 2i sin . z z 1 1 z n n 2 cos n and z n n 2i sin n. (ii) z z 7 1 7 By writing 2 cos z , and expanding the R.H.S., express cos 7 in terms of z multiple angles. Express sin 7 in terms of multiple angles. (i) (b) (c) z 28. Solve the equation z 4 1 ( z C). 29. Find the three cube roots of i. 30. Solve the equation z 3 27 ( z C). 31. (a) Verify that x 2 3i is a root of the equation x 4 7 x 2 12 x 130 0. (b) Hence find all roots in the form a ib (a, b R ). 32. Solve the equation z 5 1 0, giving the non-real roots in conjugate pairs. 33. Show that z 1 i is a root of the equation z 4 4 0. Hence find all the roots. 34. Show that z 3 i is a root of the equation z 4 3z 3 4 z 2 6 z 40 0. Hence find all the roots. 35. Show that z 4 3i is a root of the equation z 3 21z 2 129 z 325 0. Hence find all roots. 36. If z x iy , find the equations of the loci defined by (i) z4 3 (ii) 37. Obtain the expansion of sin 7 in powers of sin . 38. Obtain the expansion of cos7 in powers of cos . arg( z 2) 6 .