Download Advanced Higher Mathematics Unit 2

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Advanced Higher Mathematics Unit 2
Complex Numbers 1
1.
2.
If a  1  i, b  2  i, c  2  3i, express in the form x  iy :
(i)
ab
(ii)
(v)
a2  b2
(vi)
(ix)
b
a
(x)
(iii)
ab
1
a
b
ac
(vii)
(xi)
a 2c
1
ab
ab
c2
(iv)
(viii)
(xii)
(a  b)c 2
a
b
(a  b) 2
Solve the following equations, giving the roots in the form x  iy (where either x or y may be
zero).
(i)
(iii)
x 2  4 x  20  0
x 2  4x  7  0
(ii)
(iv)
x 2  36  0
x 2  2ix  2  0
3.
If z  x  iy , write down the complex conjugate, z , and express
4.
If z  1  i, express z in the form x  iy , and hence evaluate zz .
5.
If x  iy 
3i
, find x and y.
2i
6.
If a  ib 
1
, show that (a 2  b 2 )( x 2  y 2 )  1.
x  iy
7.
If z  cos   i sin , find the value of
8.
If z  cos   i sin , find the values of z 
9.
Find the modulus and argument of:
(i)
1 i
3  4i
.
1 i
10.
Find
11.
 3i
.
Find Arg 

 1 i 
(ii)
z
in the form x  iy .
z
1
.
z
1
1
and z  .
z
z
3  5i
(iii)
 2  3i


12.
Find 1  i 
13.
If z  1, describe the locus of the point ( x, y ) , where z  x  iy.
14.
Evaluate
15.
Find the modulus and argument of
16.
 1 i 
Find Arg 
,
 3 i
(i)
(ii)
3i .
1 i
.
7i
1  3i
.
8i
By finding the arguments and subtracting.
1 i
By first writing
in the form a  ib.
3i
17.


 


Simplify  cos  i sin  cos  i sin  .

3
3 
6
6
18.


 
2
2 
Simplify  cos  i sin  cos
 i sin  .

5
5 
5
5 
19.



Simplify  cos  i sin  .

6
6
20.
Simplify
cos 2  i sin 2
.
cos   i sin 
21.
Simplify
cos 3  i sin 3
.
cos 2  i sin 2
22.
 1 i 3 
 .
Evaluate 

2


23.
Evaluate 1  i  .
2
3
3
6
24.
Expand cos 4 i sin 4 by De Moivre’s Theorem.
Use your result to express cos 4 as a polynomial in cos .
4
[Write cos 4 i sin 4   cos  i sin  . ]
25.
By writing cos 5 i sin 5   cos  i sin  , express
5
(i)
cos5 in terms of cos
(ii)
sin 5 in terms of sin .
3
26.
 3i
 .
Evaluate 

2


27.
(a)
If z  cos   i sin , show that
1
1
 2 cos  and z   2i sin .
z
z
1
1
z n  n  2 cos n and z n  n  2i sin n.
(ii)
z
z
7
 1
7
By writing  2 cos    z   , and expanding the R.H.S., express cos 7  in terms of

z
multiple angles.
Express sin 7  in terms of multiple angles.
(i)
(b)
(c)
z
28.
Solve the equation z 4  1 ( z  C).
29.
Find the three cube roots of i.
30.
Solve the equation z 3  27 ( z  C).
31.
(a)
Verify that x  2  3i is a root of the equation x 4  7 x 2  12 x  130  0.
(b)
Hence find all roots in the form a  ib (a, b  R ).
32.
Solve the equation z 5  1  0, giving the non-real roots in conjugate pairs.
33.
Show that z  1  i is a root of the equation z 4  4  0. Hence find all the roots.
34.
Show that z  3  i is a root of the equation z 4  3z 3  4 z 2  6 z  40  0. Hence find all the roots.
35.
Show that z  4  3i is a root of the equation z 3  21z 2  129 z  325  0. Hence find all roots.
36.
If z  x  iy , find the equations of the loci defined by
(i)
z4 3
(ii)
37.
Obtain the expansion of sin 7 in powers of sin .
38.
Obtain the expansion of cos7 in powers of cos .
arg( z  2) 

6
.
Related documents