Download worksheet - hrsbstaff.ednet.ns.ca

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Multiplying and Dividing Square Roots:
Example:
a)
c)
d)
If two square roots are being multiplied or divided,
then write a single square roots and move the
multiplication or division inside that square root.
Perform the following operations and simplify all radicals:
 2  3 
23 
3 5 4 10   34
6
510  12
b)
24

8
24
 3
8
  2   125 2 
50  12 25
  2   163 2   48
 32  54 
  
 16 18  16 9
2 3
 2  3 
32 54
2
NOW DO EXERCISE 2 ON THE WORKSHEET!
Like Square Roots: Like Square Roots are square roots that have the same number inside the
radical sign.
Examples:
Like Square Roots:
3,
4 3,
2 3
NOT Like Square Roots:
3,
4 5,
2 7
Adding and Subtracting Square Roots:
ONLY like square roots can be added or
subtracted...carry the common square root and add
or subtract the coefficients (numbers in front of the
square root).
Examples:
Perform the following operations and simplify the radicals:
a) 3 5  7 5  8 5  4 5
----------------------------------------------------------------------------------------------------------------b)
50  18
NOTE: These are not like square roots and can’t be added but they can be
simplified.

 25  2    9  2   5
2 3 2
Once they are simplified we notice that they are now like square roots and can now be added.
=8
2
----------------------------------------------------------------------------------------------------------------------------- ----------
  7    9  7 
 32 7   3 7 

3 28  63  3 4
c)
6 7 3 7 3 7
d)
2 3

3 2

 6 4 9 6
 2 6  2  3  2 6 1
NOW DO EXCERCISES 1,2 and 3 ON THE WORKSHEET!
Square Roots and Operations with Radicals
Worksheet
1. Perform the following operations and simplify all radicals:
a)
d)
 2  5 
72
b)
e)
6
3 2  6 
50
c)
f)
5
g)
 8 
h)
j)
 2  9  10 




 5  2  3 




k)
1


2


2 15 3 30 
7
 8  6 
27 490
9 5
i)
l)
63
6 2 6 18 
24 56
6 7
2. Perform the following operations and simplify all radicals:
a)
3 54 5
b)
2 7 7 2
c)
14 8  5 8
d)
2 11  7 11  4 11
e)
7 6 4 3 3 6 2 2
f)
8  18
75  20
g)
j)
h)
3 72  2 75  3 27  108
27  48  2 3
k)
i)
 5 44  2 99
250  135  40  735
3. Perform the following operations and simplify radicals:
a)

c)
2
e)

5 3

5 2
8 6

5 3

2

3 6

b)

6 2

d)

2 6
2
 10  3 
Related documents