Download 1 y

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Welcome to MAR 6658
Mathematical
Marketing
Course Title
Quantitative Methods in Marketing IV:
Customer Metrics and Choice Modeling
Prerequisites
MAR 6507 or instructor permission
Instructor
Charles Hofacker
Meeting
M/W 10a-12p
Contact Info
Email: chofack @ cob.fsu.edu
Office: RBB 255
Hours: M/W 2.15p-3.15p
Grades
Two exams plus homework
Slide 1.1
Linear Algebra
Ready to Get Going?
Mathematical
Marketing
Slide 1.2
Linear Algebra
Vectors and Transposing Vectors
An m element column vector
a 1 
a 
a 2
 
 
a m 
Transpose the column
a  [a1 a 2  a m ].
Mathematical
Marketing
A q element row vector
b  [b1b2 bq ]
Transpose the row
b1 
b 
2
b   

 
b q 
Slide 1.3
Linear Algebra
A Matrix Is A Set of Vectors
•X is an n · m matrix
•First subscript indexes rows
•Second subscript indexes columns
 x11 x12
x
x 22
X   21
 

 x n1 x n 2
 x 1m 
 x 2m 

  

 x nm 
 {x ij }.
Mathematical
Marketing
Slide 1.4
Linear Algebra
The Transpose of a Matrix
 x11 x12
x
x 22
X   21
 

 x n1 x n 2
 x11 x 21
x
x 22
  12
 

 x 1n x 2 n
 x 1m 
 x 2m 

  

 x nm 
 x m1 
 xm2 

  

 x mn 

1 2 3 
A

 4 5 6
1 4 
A  2 5


3 6
14 2 
B

 3 14 
14 3 
B  

 2 14 
Note that (X')' = X
Mathematical
Marketing
Slide 1.5
Linear Algebra
The Dot Subscript Reduction Operator - Rows
We can display an intermediate amount of detail by
separately keeping track of each row:
x1  [ x11 x12  x1m ]
x2  [ x 21 x 22  x 2 m ]
 
xn  [ x n1 x n 2  x nm ]
So the matrix X becomes
x1 
x 
X   2 
 
 
xn 
Mathematical
Marketing
Slide 1.6
Linear Algebra
The Dot Subscript Reduction Operator – Columns
Or we can keep track of each column of X:
 x11 
 x12 
 x 1m 
x 
x 
x 
21
22




x1 
, x 2 
, , x  m   2 m 
 
 
 
 
 
 
 x n1 
x n 2 
 x nm 
So that X is
X  x1 x2  xm 
Mathematical
Marketing
Slide 1.7
Linear Algebra
The Equals Sign
A = B iff aij = bij for all i, j.
The matrices must have the same order.
Mathematical
Marketing
Slide 1.8
Linear Algebra
Some Special Matrices
d11
0
D


0
Diagonal
Scalar
Unit
Mathematical
Marketing
cI
1
0  0 
d 22  0 

   

0  d mm 
c
0



0
0
c

0




0
0



c 
1
1
1 
n m


1
1
1

1




1 
1 



1 
Slide 1.9
Linear Algebra
More Special Matrices
Null
Symmetric
Identity
Mathematical
Marketing
0
0
0m  
n


0
d11
a



b
1
0
I


0
0
0

0




0
0



0
a  b 
d 22  c 

   

c  d mm 
0
1

0




0
0



1 
Slide 1.10
Linear Algebra
Matrix Addition
 Adding two matrices means adding corresponding
elements.
 The two matrices must be conformable.
CAB
{cij }  a ij  bij .
1 2 10 10 11 12
2 1  10 10  12 11

 
 

3 4 10 10 13 14
Mathematical
Marketing
Slide 1.11
Linear Algebra
Properties of Matrix Addition
Mathematical
Marketing
 Commutative:
A+B=B+A
 Associative:
A + (B + C) = (A + B) + C
 Identity:
A+0=A
Slide 1.12
Linear Algebra
Vector Multiplication
Vector multiplication works
with a row on the left
and a column on the right.
There are a lot of names for this:
•linear combination
•dot product
•scalar product
•inner product

 
      

 

ab  a 1 a 2
b1 
b 
 am   2 
 
 
b m 
 a 1b1  a 2 b 2    a m b m
m
  a i bi .
i 1
Mathematical
Marketing
Slide 1.13
Linear Algebra
Orthogonal Vectors
Two vectors x and y are said to be orthogonal if
xy  0
2
x =[2
1]
1
0
-2
-1
0
1
2
-1
-2
Mathematical
Marketing
Slide 1.14
Linear Algebra
Scalar Multiplication
1

3
10 
5

7

Mathematical
Marketing
2

4
10

30
 

6 50
8 70
20

40
60
80
Associative:
c1(c2A) = (c1c2)A
Distributive:
(c1 + c2) A = c1A + c2A
Slide 1.15
Linear Algebra
Matrix Multiplication
n
cij  aib j   a ik b kj
k
m
Cp m An n Bp
 5 4
2 3 
 1
C
0 2



 2  2 1 
 1 1
(1)5  (2)0  (3)  1 (1)4  (2)2  (3)1


 (2)5  (2)0  (1)  1 (2)4  (2)2  (1)1
 8 3


 9 5
Mathematical
Marketing
Slide 1.16
Linear Algebra
Partitioned Matrices
Visually, matrices act like scalars
AB  A1
 B1 
A 2     A 1B1  A 2 B 2
B 2 
And here is a little example
Mathematical
Marketing
a 12
a
  11
a
a
 21
22
 b11
a 13  
b 21
a 23  
b 31
a 
  11  b11
a 21 
b12
b12
b 22
b 32
a
b13    12
a 22
b13 
b 23 

b 33 
a 13  b 21
a 23  b 31
b 22
b 32
b 23 
b 33 
Slide 1.17
Linear Algebra
The Cross Product Matrix B
Keeping track of the columns of X
x1 
 x 
B  XX   2  x 1
 
 
xm 
x1 x 1 x1 x 2
 x x
x2 x 2
  2 1



xm x 1 xm x 2
x 2  x m 




x1 x m 
x2 x m 

 

xm x m 
 {x j x k }  {b jk }
Mathematical
Marketing
Slide 1.18
Linear Algebra
The Cross Product Matrix 2
Keeping track of the rows of X
B  XX  x 1
x 2  x n 
x1 
 x 
 2 
 
 
xn 
 x 1 x1  x 2 x2    x n xn 
n
  x i xi
i
Mathematical
Marketing
Slide 1.19
Linear Algebra
Properties of Multiplication
Scalar Multiplication:
 Commutative:
cA = Ac
 Associative:
A(cB) = (cA)B = c(AB)
Matrix Multiplication:
 Associative:
(AB)C = A(BC)
 Right Distributive:
A[B + C] = AB + AC
 Left Distributive:
[B + C]A = BA + CA
 Transpose of a Product
 Identity
Mathematical
Marketing
(BA)' = A'B'
IA = AI = A
Slide 1.20
Linear Algebra
The Trace of a Matrix
Tr S   s ii
i
Tr[AB] = Tr[BA] .
The theorem is applicable if both A and B
are square, or if A is m · n and B is n · m
Note that for a scalar s, Tr s = s.
Mathematical
Marketing
Slide 1.21
Linear Algebra
Solving a Linear System
Consider the following system in two unknowns:
a 11x 1  a 12 x 2  y1
a 21x 1  a 22 x 2  y 2
a 11 a 12   x 1   y1 
a
 x    y 
a
 21
 2
22   2 
Ax  y
The key to solving this is in the denominator below:
x1 
y1a 22  y 2 a 12
a 11a 22  a 12 a 21
|A|  a 11a 22  a 12a 21
Mathematical
Marketing
Slide 1.22
Linear Algebra
An Inverse for Matrices
ax = y
Ax = y
a-1ax = a-1y
A-1Ax = A-1y
1x = a-1y
Ix = A-1y
x = a-1y
x = A-1y
Scalars: One Equation and
One Unknown
Matrices: N Equations and
N Unkowns
We just need to find a matrix A-1 such that AA-1 = I.
Mathematical
Marketing
Slide 1.23
Linear Algebra
The Inverse of a 2 · 2
1
a 11 a 12 
1  a 22

a

|A|  a 21
 21 a 22 
 a 12 
a 11 
1
2 1
1  3  1

0 3
6  0 2


3

2 1  6
0 3  0


 6
Mathematical
Marketing
 1
6  1 0


2  0 1

6

Slide 1.24
Linear Algebra
The Inverse of a Product
Inverse of a Product:
Mathematical
Marketing
(AB)-1 = B-1 A-1
Slide 1.25
Linear Algebra
Quadratic Form
x' Ax  x 1
x2
 a 11
a
 x m   21


 a m1
a 12
a 22

a m2
 a 1m   x 1 
 a 2m   x 2 
 
    
 
 a mm   x m 
(Bilinear form is where the pre- and post-multiplying vectors are not necessarily identical)
Mathematical
Marketing
Slide 1.26
Linear Algebra
Related documents