Download PM 11

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
PM 11
Final Exam Review 4
1. Determine the equation of the quadratic function to the right:
2. Determine the zeroes of the quadratic function:
y  2 x 2  7 x  4 by factoring
3. Write the equation of the parabola with a vertex (2,3), opens down, with a yintercept of -5
4. Find the two numbers whose is 10 and whose product is a maximum. Show the
product as a function of x. Complete the square.
5. The equation of the inverse of y = 2x – 3 is:
6. Graph y   x  1  4 and its inverse. Label
2
7. Determine an equation of the graph
8. Find the equation of the cubic function has zeroes of -5, -3, and 2 and a y-intercept
of -15.
9. Graph y = x – 3 and its reciprocal. Label
1
, x  2
x 4
Given f(x) = 4x + 1 and g(x) = 2x – 4, determine g(f(3))
Given f(x) = 3x + 4 and g(x) = x 2  1 , find g(f(x))
Solve 4 x 2  5 x  2  x 2  2 x
14. Solve x3  2 x 2  x  2  0 by factoring
When 2 x3  x 2  kx  4 is divided by x + 1, the remainder is 4. Find the value of k
Solve x 3  4 x  7  0 by graphing
Solve 2x 2  3x  5  0 , then graph the solution
3
x
2
Solve x  x  3 x  2  0
19. Solve 
x x2
10. Graph and label y 
11.
12.
13.
15.
16.
17.
18.
20. Solve
2x 1 1  x
2
21. Solve
x 3  x 1
22. Solve x + 2y = 5
1
y x
3
23. Solve y   x 2  2 by graphing
24. Solve 2x + 3y = 8
25. Solve 2 x  3  x  6
y = 2x – 1
4x – y = 9
26. An aerobics studio charges a flat yearly fee plus a per-month charge. Alice was
charged a total of $340 for 4 months. Denise was charged $445 for 7 months.
Determine the a) yearly fee and b) the monthly charge
27. Solve y  2 x  3
x y 5
28. Find the missing angles
51°
x
y
47°
29. Find the missing angles
a
280°
b
30. Find the value of x
20
x
12
31. Find the values of x and y
10
y
66°
x
32. Find the values of x and y
y
47°
x
52°
33. Find the value of OP
15
8
P
O
34. Graph and label  x  3   y  1  4
2
2
35. Give the co-ordinates of the intersection point(s) of  x  3   y  1  13
2
2
and x + y = 7
36. Write the equation of the circle with a centre of (0,3) and a radius of
17
37. Determine the shortest distance from A(-4,5) and the line y = 3x – 2
38. OP = 5 cm, the radius is 4 cm, and OPB = 40°. Find the length of chord AB
O
40°
P
A
B
39. Determine the shortest distance from the origin to the line x – 2y = 4
40. Verify that x + 3y = 10 is tangent to x 2  y 2  10
41) Solve 4 cos 2   1  0 , for 0    360
42) Find the principle angle and the reference angle for the following
a) 700° b) (-125°) c) 640°
43) P( 2 ,-5) is on the terminal arm of angle  , in standard position. Find the exact
values of the six trig ratios
Answer Key:
 1 
2)   , 4 
 2 
1) y   x  2   3
2
5) y 
3) y  2  x  2   3
2
4) the numbers are 5 and 5
x3
2
6)
7) f ( x)   x  2  x  1
2
9)
1
 x  5 x  3 x  2 
2
10)
 1

13) x   , 2 
 3

16) x = { 2.59 }
12) 9 x 2  24 x  17
11) g(f(3)) = 22
15) k = { -3 }
17) x  1 or
x 
14) x  2, 1,1
5
2
-1
18) x  3 or 0  x  2
22) (3,1)
8) y 
5
2
19) X = {-3,2 }
23) { (-3,-7),(1,1) }
20) x = { 4 }
5 
24)  ,1 25) x = { 3, -3 }
2 
21) x = { 1 }
26) $200;$35
27)
28) x = 47°, y = 82°
30) x = { 8 }
31) x = 10cm, y = 57°
33) OP = 17
34)
36) x 2   y  3  17
2
29) a = 80°, b = 40°
32) x = 52°, y = 99°
35) { (6,1), (5,2) }
37) 5.87 units
38) AB = 4.76 units
39) 1.82 units
1
40) The radius has a slope of 3 and the line has a slope of  . The point of tangency is
3
(1,3)
41) 60,120, 240,300
42) a) 240°, 60° b) 235°, 55°
43) sin   
5
3 3
, cos  
c) 280°, 100°
2
5
3 3
3 3
2
, tan   
, sec  
, csc   
, cot   
5
5
3 3
2
2
Related documents