Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Non-Calculator Name _____________________________ Date_________ Pd ________ REVIEW #18 – POLAR EQUATIONS AND GRAPHS Plot each point. 7 1. A 2, 4 2 2. B 3, 3 11 3. C 5, 6 3 4. D 4, 2 4 5. E 1, 3 6. F 4, Name each point using polar coordinates four ways where -2π θ 2π. 7. P = ____________, ____________ ____________, ____________ Q 8. Q = ____________, ____________ ____________, ____________ Name each point two ways using polar coordinates where 2π θ 4π. 9. Q = ____________, ____________ P Non-Calculator 2 For each point (r, θ), give rectangular coordinates (x, y). 7 10. 10, 6 __________ 3 11. 9.5, 2 __________ For each point (x, y), give two sets of polar coordinates (r, θ), where 0 θ 2π. 12. (5, -5) ______________________ 14. 2 3,2 ___________________ 13. (-16, 0) ______________________ 15. 2, 6 ____________________ Identify and graph each polar equation. 16. r = 1 – 3sinθ _________________ 17. r = 5sin2θ _________________ Non-Calculator 3 18. r = 1 – 4cosθ _________________ 19. rcosθ = 2 ___________________ 20. r = cosθ ____________________ 21. r2 = 25sin2θ _________________ 22. r = -4sinθ 23. r = 2 + 2sinθ __________________ _________________ Non-Calculator 4 24. 4 _________________ 3 26. r = -2 _________________ 25. r = 4cos3θ _________________ 27. r = 3 + 2cosθ _______________ Write the equation for each graph. 28. ________________________ 29. _________________________ Non-Calculator 5 30. ________________________ 31. _________________________ 32. ________________________ 33. _________________________ Analyzing Polar Equations 34. r = 2 + 4sinθ a) Type of curve: ________________ b) The maximum value of r is _________. c) Find the values of θ where the maximum occurs (algebraically) for 0 θ 2π. d) The minimum value of r is _________. Non-Calculator 6 e) Find the values of θ where the minimum occurs (algebraically) for 0 θ 2π. f) Find the zeros of r. g) When is r = 4? h) Graph r = 2 + 4sinθ. Calculator For each point (r, θ), give rectangular coordinates (x, y). (θ is given in radians) 35. (-1.45, 8.6) _______________ 5 36. 25, _______________ 16 7 For each point (x, y), give two sets of polar coordinates (r, θ), where 0 θ 2π. 37. (-12, 14) _______________ 38. (-2.3, -6.1) _______________ Review. Look over all the logarithm review problems on A7-2 through A7-5. (Some are calculator – most are noncalculator) Use trig identities to solve the following equations on the interval 0 x 2π . (Non-calculator) 39. sin x = cscx 40. cos 2x + cos x = 0 8 Answers to Review #18 18. 24. 19. 25. 20. 26. 21. 27. 22. 28. r = -2sinθ 1 – 6. D A F E C B 5 7 7. 3, , 3, , 6 6 11 3, , 3, 6 6 4 2 8. 5, , 5, , 3 3 5 5, , 5, 3 3 11 8 9. 5, , 5, 3 3 10. 5 3,5 11. (0, -9.5) 7 3 12. 5 2 , , 5 2 , 4 4 13. (16, π), (-16, 0) or (-16, 2π) 11 5 14. 4, , 4, 6 6 4 15. 2 2 , , 2 2, 3 3 16. 30. 32. 34. 17. 23. 35. 36. 37. 38. 39. 29. r = 4 – 4cosθ 5 r = 2 – 6sinθ 31. θ = 6 r = 5sin(6θ) 33. r = 4 + 3cosθ a) Limacon with Loop b) 6 3 c) θ = d) -2 e) θ = 2 2 7 11 5 , f) θ = g) θ = , 6 6 6 6 (.984, -1.065) (13.889, -20.787) (18.439, 2.280), (-18.439, 5.421) (6.519, 4.352), (-6.519, 1.210) 5 3 x= , 40. x = , π, 2 2 3 3