• Study Resource
• Explore

Survey

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
```Starter
Simplify
1) 6a4b3 x 2ab7 =
Expand
6) m(2m2 – 5) =
2) (3ab4)2 =
7) -4p2(2p4 + 3) =
3) 12m4n5  6mn5 =
8) -2p(2q – 5)3 =
4) (2a2b)4 x 4a5 =
Factorise
9) 24m3e4 – 32e5 =
8 w 5p + 6
5)
(3w
2p +1 2
)
=
10) 16m3n – 20m6n8 =
HW Theta pg 13 Done?
. Factorising: What do you notice? .
1)
3x 2 + 7x + 2
2×3=6
Factors 1,6
2,3
Ex 3.05
3x 2 + 7x + 2
= 3x2 + 1x + 6x + 2
= x(3x + 1) + 2(3x + 1)
= (3x + 1)(x + 2)
2)
12 x2
17x 5
-5 × 12 = -60
Factors 1,-60
2,-30
12 x2
3,-20
4,-15
17x 5
= 12 x2 + 3x 20 x 5
= 3x(4x + 1) 5(4x + 1)
Achieve!
= (4x + 1)(3x 5)
5,-12
6,-10
. Factorising: What else do you notice? .
1)
x 2 + 8x + 16
= (x + 4)(x + 4)
Ex 3.06
= (x + 4)2
2)
4x2 + 20 x + 25
25 × 4 = 100,
Factors of 100 = 10,10
= 4x2 + 10 x + 10 x + 25
= 2x(2x + 5) + 2x(2x + 5)
= (2x + 5)(2x + 5) = (2x + 5)2
3)
x2
4)
81x2
5)
x2 + 5x 14
2x2 + 12 x 14
100
49y2
= (x + 10 )(x 10 )
Ex 3.06
= (9x + 7y)(9x 7y)
(x + 7)(x 2)
x +2
=
=
(
)(
)
2 x + 7 x 1 2(x 1)
Ex 3.07
Achieve!
eg 7x2 + 13x – 2
Harder Factorising
7x2 + 13x – 2
Multiply the number in front of x2 and the constant
List the factors of this number
7 × -2 = -14
Factors of -14 = 1 × -14
2 × -7
(number by the x)
Rewrite the question splitting the middle term
-1 × 14
-2 × 7
+14 and - 1
7x2 + 13x – 2
7x2 + 14x – 1x – 2
Theta Ex 3.05
Factorise each pair
7x(x + 2) – 1(x + 2)
Factorise again
(7x – 1)(x + 2)
Try these
1) 5x2 + 11x + 2
2) 4x2 + 21x + 5
3) 3x2 – 7x – 6
Perfect squares
1) x2 – 6x + 9 =
3) 9x8 – 42x4y5 + 49y10 =
2) 4x2 – 12x + 9=
y y2
4) x 2  x  4 
1
Theta
Ex 3.06
Difference between two squares
Expand (2x + 3)(2x – 3) =
So factorising these is easy
extension:
x2 – 3y + xy – 9
1) x2 – 16 =
4) 4x2 – 4 =
2) 9x2 – 49y2 =
5) 9x2 –
3) 4x – 121y
1 2
1
6) 9 x – 1 6 y2 =
4
6
=
1
4
=
Factorising & fractions
Algebra fractions can sometimes be simplified by factorising first
4 x  3

1)
2
x3x  4 

2)
3x
15x
3) 5 x x  3  
4)
x  9 x  2  
x  2 x  1
4 x  12

5)
2
6 x 2  9x

6)
3x
5x 3
7) 15x 2  10x 
6 x 2  9x
8) 2x  3 
x 2  8x  12
9) x 2  3x  18 
Factorising and cancelling
Factorise as much as possible and cancel
3x  9
1) x 2  5x  6 
2x  4
2) x 2  4 
2x  4
3) x 2  3x  10 
2x 2  3x  2
4) 3x 2  4 x  4 
x 3
x 2  5x  6

5) x 2  12x  35 
x 5
2a 2  98 a 2  3a  10 a 2  5a  14
6) a 2  25  3a  21  2a  10 
HW Theta pg 14
Theta
Ex 3.07
Factorising Review
Is there a common Factor?
eg 4x2 + 12x+ 8
Yes
No
Are there 4 terms (in two pairs)?
eg xy + 3x + 2y + 6
Factorise out the
common factor first
4(x2 + 3x + 2)
Factorise by parts
= x(y + 3) + 2( y + 3)
= (x + 2)(y + 3)
Yes
No
Is there a difference between squares?
Yes
eg 4x4 – 9y2
No
Factorise
(2x2 – 3y) (2x2 + 3y)
What is there a coefficient in front of x2
eg 2x2 + 11x + 5
Not 1
=1
Factorise by basic method
eg x2 + 3x + 2
= (x + 2)(x + 1)
Harder factorising method
2x2 + 11x + 5
= 2x2 + 10x +1x + 5
= 2x(x + 5) + 1(x + 5)
= (2x + 1)(x + 5)
```
Related documents