Download Harder Extension 1 topics Solutions Main Menu

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Objective Response Bank
YEAR 12
Mathematics Extension 2
Topics
1. Graphs
2. Complex numbers
3. Conics
4. Integration
5. Volumes
6. Mechanics
7. Polynomials
8. Harder Extension 1 topics
Year 12 Mathematics Extension 2
Graphs
1
Solutions
The diagram shows the graph of the function y  f ( x) .
Which of the following is the graph of y 
f ( x) ?
(B)
(A)
(D)
(C)
2
Main Menu
Year 12 Mathematics Extension 2
2
The diagram shows the graph of the function y  f ( x) .
Which of the following is the graph of y  f ( x)2 ?
(B)
(A)
(D)
(C)
3
Year 12 Mathematics Extension 2
3
The diagram shows the graph of the function y  f ( x) .
Which of the following is the graph of y  f ( x) ?
(B)
(A)
(D)
(C)
4
Year 12 Mathematics Extension 2
4
The diagram shows the graph of the function y  f ( x) .
Which of the following is the graph of y 
1
?
f  x
(A)
(B)
(C)
(D)
5
Year 12 Mathematics Extension 2
5
The diagram below shows the graph of the function y  f ( x) .
Which diagram represents the graph of y 2  f ( x) ?
(A)
(B)
(C)
(D)
6
Year 12 Mathematics Extension 2
6
What is the graph of y  f  x  given that f ( x)  4  x 2 ?
(A)
(B)
(C)
(D)
7
Which of the following is the sketch of y  log 2 x 
(A)
(B)
(C)
(D)
7
1
?
x
Year 12 Mathematics Extension 2
8
The diagram shows the graph of the function y  f ( x) .
Which of the following is the graph of y  f ( x) ?
(B)
(A)
(D)
(C)
8
Year 12 Mathematics Extension 2
9
The diagram shows the graph of the function y  f ( x) .
Which of the following is the graph of y 
f  x ?
(B)
(A)
(D)
(C)
9
Year 12 Mathematics Extension 2
10 The diagram shows the graph of the function y  f ( x) .
Which of the following is the graph of y 2  f x  ?
(B)
(A)
(D)
(C)
10
Year 12 Mathematics Extension 2
Complex numbers
Solutions
11 Let z  1  i and w  1  2i . What is the value of zw ?
(A) 1  i
1  i
(C) 3  i
(D) 3  i
(B)
12 Let z  3  4i and w  3  i . What is the value of
(A)
3 3  4 (4 3  3)i

4
4
(B)
3 3  4 (4 3  3)i

4
4
(C)
3 3  4 (4 3  3)i

2
2
(D)
3 3  4 (4 3  3)i

2
2
13 Let z  1  2i and w  2  i . What is the value of
(A)
z
?
w
5
?
iw
1  2i
1  2i
(C) 1  2i
(D) 1  2i
(B)
14 Let z  3  i . What is the value of iz ?
(A) 1  3i
1  3i
(C) 1  3i
(D) 1  3i
(B)
15 Let z  2  i and w  1  i . What is the value of 3z  iw ?
(A) 5  4i
5  4i
(C) 7  4i
(D) 7  4i
(B)
11
Main Menu
Year 12 Mathematics Extension 2
16 What is the value of arg z given the complex number z  1  i 3 ?

3
2
(B) 
3

(C) 
3

(D)
3
(A)

17 What is the value of
z1
given the complex numbers z1  2  2i and z2  1  i 3 ?
z2
(A)
3 1
3 1

i
2
2
(B)
1 3
3 1

i
2
2
(C)
3 1
3 1

i
4
4
(D)
1 3
3 1

i
4
4
18 It is given that 3  i is a root of P( z )  z 3  az 2  bz  10 where a and b are real numbers.
Which expression factorises P(z) over the real numbers?
(A) ( z  1)( z 2  6 z  10)
(B)
( z  1)( z 2  6 z  10)
(C)
( z  1)( z 2  6 z  10)
(D) ( z  1)( z 2  6 z  10)
19 What is the solution to the equation z 2  i z ?
(A) (0, 0) and (0,1)
(B)
(0, 0) and (0, 1)
(C)
(0, 0) , (0, 1) , (
(D) (0, 0) , (0,1) , (
3 1
3 1
, ) and ( 
, )
2 2
2 2
3 1
3 1
, ) and ( 
, )
2 2
2 2
12
Year 12 Mathematics Extension 2
20 Consider the Argand diagram below.
Which inequality could define the shaded area?
(A) 0  z  2
(B) 1  z  2
(C)
0  z 1  2
(D) 1  z  1  2
21 Consider the Argand diagram below.
y
3
2
(1,1)
1
-2
-1
1
-1
-2
Which inequality could define the shaded area?
(A) | z | 1 and | z  (1  i ) | 1
(B)
| z | 1 and | z  (1  i) | 1
(C) | z | 1 and | z  (1  i ) | 1
(D) | z | 1 and | z  (1  i) | 1
13
2
3
x
Year 12 Mathematics Extension 2
22 Consider the Argand diagram below.
Which inequality could define the shaded area?
(A)
z  1  2 and 0  arg( z  i ) 
(B)
z  1  2 and 0  arg( z  i) 
(C)
z  1  1 and 0  arg( z  i ) 
(D)
z  1  1 and 0  arg( z  i) 

4

4

4

4
23 Consider the Argand diagram below.
y
4
3
2
1
-2
-1
1
2
x
-1
-2
Which inequality could define the shaded area?
(A) | z  i | 2 and 0  arg( z  1) 
(C) | z  i | 2 and 0  arg( z  1) 
3
4
(B)

| z  i | 2 and 0  arg( z  1) 
(D) | z  i | 2 and 0  arg( z  1) 
4
14
3
4

4
Year 12 Mathematics Extension 2
24 What is 1  i expressed in modulus-argument form?
(A) (cos
(B)
(C)
(D)


 i sin )
4
4


 i sin )
4
4
3
3
(cos
 i sin )
4
4
2(cos
2(cos
3
3
 i sin )
4
4
25 What is  3  i expressed in modulus-argument form?
(A)
(B)
(C)
(D)
2(cos
2(cos


 i sin )
6
6

 i sin )
6
6
2(cos
2(cos

5
5
 i sin )
6
6
5
5
 i sin )
6
6
26 What is 2  2 3i expressed in modulus-argument form?
(A)
(B)
2
2
 i sin )
3
3
2
2
4(cos
 i sin )
3
3
2(cos
(C)
2(cos
(D)
4(cos




 i sin )
3
3
 i sin )
3
3
27 What is (1  3i ) 1 expressed in modulus-argument form?
(A)
1


(cos  i sin )
4
3
3
(B)
1


(cos  i sin )
4
3
3
(C)
1


(cos  i sin )
2
3
3
(D)
1


(cos  i sin )
2
3
3
15
Year 12 Mathematics Extension 2
28 What are the three roots of z 3  1  0 in modulus argument form?
2π
3
2π
2π
cis0, cis , cis 
3
3
(A) cis0, cis
(B)
(C)
cis0, cis
π
3
π
π
(D) cis0, cis , cis 
3
3
29 Which of the following complex numbers equals ( 3  i)4 ?
(A)
2 
2
(B)
8 
8
(C)
2  2 3i
(D)
8  8 3i
3
3
i
i
30 Let the point R represent the complex number z on an Argand diagram. Which of the
following describes the locus of R specified by | z || z  4 | ?
(A) Perpendicular bisector of (0,0) and (4,0)
(B) Perpendicular bisector of (0,0) and (4,0)
(C) Circle with a centre (0,0) and radius of 2
(D) Circle with a centre (0,0) and radius of 4
16
Year 12 Mathematics Extension 2
Conics
Solutions
31 For the ellipse with the equation
(A)
1
4
(C)
3
4
Main Menu
x2 y 2

 1 . What is the eccentricity?
4
3
1
(B)
2
(D)
9
16
x2 y2

 1 where a  b  0 . The tangent at P meets the
a 2 b2
tangents at the ends of the major axis at R and T.
32 The point P lies on the ellipse
y
R
P
T
x
What is the equation of the tangent at P?
(A)
ax
by

 a 2  b2
cos sin 
(B)
ax
by

 a 2  b2
sec tan 
(C)
x
y
sec  tan   1
a
b
(D)
x
y
cos   sin   1
a
b
17
Year 12 Mathematics Extension 2
x2 y2

 1 and
a 2 b2
the chord PQ subtends a right angle at (0,0) . Which of the following is the correct
expression?
33 The points P(a cos  , b sin  ) and Q (a cos  , b sin  ) lie on the ellipse
(A)
b2
tan  tan    2
a
(B)
tan  tan   
(C)
tan  tan  
b2
a2
(D)
tan  tan  
a2
b2
a2
b2
x2 y 2

 1 where a  b  0 . The points
a 2 b2
P (a sec  , b tan  ) and Q (a sec  , b tan  ) lie on the hyperbola and the chord PQ subtends
a right angle at the origin.
34 The diagram below shows the hyperbola
y
Q
O
x
P
Use the parametric representation of the hyperbola to determine which of the following
expressions is correct?
a2
(A) sin  sin    2
b
a2
b2
(B)
sin  sin  
(C)
tan  tan   
(D)
tan  tan  
a2
b2
a2
b2
18
Year 12 Mathematics Extension 2
c
c
) and Q (cq, ) lie on the same branch of the hyperbola xy  c 2 (p 
p
q
q). The tangents at P and Q meet at the point T. What is the equation of the normal to the
hyperbola at P?
35 The points P (cp,
(A)
p 2 x  py  c  cp 4  0
(B)
p3 x  py  c  cp 4  0
(C)
x  p 2 y  2c  0
(D)
x  p 2 y  2cp  0
36 Consider the hyperbola with the equation
x2 y 2

 1.
16 9
What is the eccentricity of the hyperbola?
(A)
3
4
(B)
5
4
(C)
9
16
(D)
25
16
37 Consider the hyperbola with the equation
x2 y 2

1.
144 25
What are the equations of the directrices?
(A)
x
13
144
(B)
x
13
25
(C)
x
25
13
(D)
x
144
13
19
Year 12 Mathematics Extension 2
x2 y 2

 1.
16 9
What are the coordinates of the foci of the hyperbola?
(A) ( 4, 0)
(B) (0, 4)
38 Consider the hyperbola with the equation
(C)
(0, 5)
(D) (5, 0)
x2 y 2
39 Consider the hyperbola with the equation

 1.
4 3
What are the coordinates of the vertex of the hyperbola?
(A) ( 2, 0)
(B) (0, 2)
(C)
(0, 4)
(D) ( 4, 0)


c
c
40 The points P cp,  and Q cq,  , p  q, lie on the same branch of the hyperbola
p
q


2
xy  c . The tangents at P and Q meet at the point T.
Which of the following expressions is the equation of the tangent to the hyperbola at Q?
(A)
x  q 2 y  2cq
(B)
x  q 2 y  2c 2
(C)
x  p 2 y  2cp
(D)
x  p 2 y  2c 2
20
Year 12 Mathematics Extension 2
Integration
Solutions
41 What is the value of

1
0
xe x dx ?
2
(A)
1 e
2e
(B)
e 1
2e
(C)
2e  1
e
(D)
1  2e
e
42 What is the value of
ex
0 1  e x dx ?
1
(A) loge 1  e 
(C)
log e
(B) 1
1  e 
(D) log e
2
43 Which of the following is an expression for
x

16  x 2
e
2
2
dx ?
(A)
2 16  x2  c
(B)
 16  x2  c
(C)
1
16  x 2  c
2
(D)

44 Which of the following is an expression for

Use the substitution u  4  sin x .
(A) 4ln | 4  sin x | c
(C)
Main Menu
sin x cos x
dx ?
4  sin x
(B)
 sin x  4ln | 4  sin x | c
1
16  x 2  c
2
4ln | 4  sin x | c
(D) sin x  4ln | 4  sin x | c
45 Which of the following is an expression for

Use the substitution u  cos x .
cos3 x 3cos5 x 3cos 7 x cos9 x



c
3
5
7
9
(A)

(B)
 cos3 x  3cos5 x  3cos 7 x  cos9 x  c
(C)
cos3 x 3cos5 x 3cos 7 x cos9 x



c
3
5
7
9
(D) cos3 x  3cos5 x  3cos 7 x  cos9 x  c
21
cos2 x sin 7 xdx ?
Year 12 Mathematics Extension 2
46 Which of the following is an expression for

1n  x  3 
1n  x  3 
1n  x  3 
1

x 2  6 x  10
dx ?

x  6 x  10   c
x  6 x  10   c
x  6 x  10   c
(A) 1n x  3  x 2  6 x  10  c
(B)
(C)
(D)
2
2
2
47 Which of the following is an expression for
 x 3
(A) sin 1 
c
 2 
(C)
1

7  6 x  x2
(B)
 x 3
sin 1 
c
 4 
dx ?
 x 3
sin 1 
c
 2 
 x 3
(D) sin 1 
c
 4 
48 Which of the following is an expression for
x
2
2
dx ?
 4 x  13
(A)
1 1 ( x  2)
tan
c
3
3
(B)
2
( x  2)
tan 1
c
3
3
(C)
1 1 ( x  2)
tan
c
9
9
(D)
2
( x  2)
tan 1
c
9
9
49 Which of the following is an expression for
(A) ln( x 2  1)  ln | x  2 | c
(B)
ln( x 2  1)  2ln | x  2 | c
(C)
ln( x 2  1)  3tan 1 x  ln | x  2 | c
(D) ln( x 2  1)  3tan 1 x  2ln | x  2 | c
22
 x
2
7x  4
dx ?
 1 ( x  2)
Year 12 Mathematics Extension 2
50 Which of the following is an expression for
(A)
1
4
ln x  1  ln x  4  c
5
5
(B)
1
4
 ln x  1  ln x  4  c
5
5
(C)
1
5
ln x  1  ln x  4  c
4
4
(D)
1
5
 ln x  1  ln x  4  c
4
4
51 Which of the following is an expression for
x
  x  1 ( x  4) dx ?
4 x2  5x  1
  x  3  x2  1 dx ?
(A) 1n  x  3  x 2  1  c
(B) 1n  x  3  x2  1  c
2
(C) 1n  x  3  x 2  1  tan -1 x  c
(D) 1n  x  3  x2  1  tan -1 x  c
2
52 What is the value of


2
0
(A) 0.322
(C) 1.107
1
d ? Use the substitution t  tan 2 .
cos   2sin   3
(B) 0.785
(D) 1.570
53 What is the value of   sec xdx ? Use the substitution t  tan 2x .
1 t
| c
t 1
t 1
| c
(D) ln |
t 1
(A) ln | (t  1)(t  1) |  c
(C)
(B)
ln | (1  t )(t  1) |  c
54 What is the value of
ln |
 x  x  2 dx ? Use the substitution u  x  2 .
3
5
1
(A)
1
7
(B)
2
7
(C)
1
3
(D)
2
3
23
Year 12 Mathematics Extension 2
55 Which of the following is an expression for
(A)
x2
x2
log e x   c
2
4
(B)
x2
x
log e x   c
2
2
(C)
(D)
x2
c
4
x
x log e x   c
2
(A)
x 4 log e x x5

c
4
20
(B)
x 4 log e x x5
 c
4
5
(C)
x5 log e x x5

c
5
20
(D)
x5 log e x x5
 c
5
5
57 What is the value of
(C)
e
x log e x 
56 Which of the following is an expression for
(A)
 x log xdx ? Use integration by parts.

12

4
log e xdx ? Use integration by parts.

6
0
x cos xdx ? Use integration by parts.
3 1

12
2

x
(B)
3
1
2
x
58 Let I n   cosntdt , where 0  x 
(D)

3 1

12
2

12

.
2
Which of the following is the correct expression for I n ?
0
(A)
 n 1 
In  
 I n  2 with n  2 .
 n 
(B)
 n 1
In  
 I n  2 with n  2 .
 n 
(C)
I n  n  n  1 I n  2 with n  2 .
(D)
I n  n  n  1 I n  2 with n  2 .
24
3
1
2
Year 12 Mathematics Extension 2

59 Let I n   x n sin xdx , where 0  x 

.
2
Which of the following is the correct expression for I n ?
0
(A)  n  n(n  1) I n  2
(B)
 n  n(n  1) I n  2
(C)  n  n(n  2) I n  2
(D)  n  n(n  2) I n  2
60 Let I n   x n e ax dx . Which of the following is the correct expression for I n ?
(A)
x neax
In 
 nI n 1
a
(B)
In 
x n eax n
 I n 1
a
a
(C)
In 
x neax
 nI n 1
a
(D)
In 
x neax n
 I n 1
a
a
25
Year 12 Mathematics Extension 2
Volumes
Solutions
Main Menu
61 The parabola y  x3 is rotated about the y axis {x : 0  x  2} to form a solid.
What is the volume of this solid using the method of slicing?
(A)
2
cubic units
5
(B)
3
cubic units
5
(C)
(D)
93
cubic units
5
96
cubic units
5
62 The area between the curve y  3x  x 2 , the x-axis, x  0 and x  3 , is rotated about the
y-axis to form a solid.
What is the volume of this solid using the method of slicing?
(A)
9
cubic units
4
(B)
9
cubic units
2
(C)
27
cubic units
4
(D)
27
cubic units
2
26
Year 12 Mathematics Extension 2
63 The region enclosed by the ellipse ( x  1) 2 
y2
 1 is rotated about the y axis to
4
form a solid.
What is the correct expression for volume of this solid using the method of slicing?
2
(A) V    1  y 2 dy
2
2
(B) V   2 1  y 2 dy
2
2
(C) V    4  y 2 dy
2
2
(D) V   2 4  y 2 dy
2
64 The region is bounded by the lines x  1 , y  1 , y  1 and by the curve x   y 2 . The
region is rotated through 360º about the line x  2 to form a solid. What is the correct
expression for volume of this solid?
(A) V     y 4  4 y 2  3dy
1
1
(B) V     y 4  4 y 2  3dy
1
1
(C) V     y 4  4 y 2  4dy
1
1
(D) V     y 4  4 y 2  4dy
1
1
27
Year 12 Mathematics Extension 2
65 What is the volume of the solid formed when the region bounded by the curves y  2 x3
and y  2 x is rotated about the x-axis? Use the method of slicing.
(A)
5
cubic units
14
(B)
10
cubic units
14
(C)
5
cubic units
7
(D)
10
cubic units
7
66 What is the volume of the solid formed when the region bounded by the curves y  x 2 ,
y  30  x 2 and the y-axis is rotated about the y-axis? Use the method of slicing.
What is the correct expression for volume of this solid using the method of cylindrical
shells?
5


(A) V   2 x 2  30  x 2 dx
0


5
(B) V   2 x x 2  30  x 2 dx
0
5
(C) V   2
0
5
(D) V   2 x
0


30  x 2  x 2 dx


30  x 2  x 2 dx
28
Year 12 Mathematics Extension 2
67 The region bounded by y  4 x 2  x 4 and 0  x  2 is rotated about the y axis to form a
solid.
What is the volume of this solid using the method of cylindrical shells?
(A)
16
units3
3
(B)
8
units3
3
(C)
20
units3
3
(D)
32
units3
3
68 A solid is formed by rotating the region enclosed by the parabola y 2  4ax , its vertex
(0,0) and the line x  a , about the x-axis.
y
x
What is the volume of this solid using the method of cylindrical shells?
(A)
7 a 3
units3
4
(B)
7 a 3
units3
8
(C)
7 a 3
units3
16
(D)
2 a 3 units3
29
Year 12 Mathematics Extension 2
69 The region enclosed by y  sin x , y  0 and x 

is rotated around the y-axis to
2
produce a solid. What is the volume of this solid using the method of cylindrical shells?
(A)  units3
(C)

units3
2
3
units3
(D)
2 units3
(B)
2
30
Year 12 Mathematics Extension 2
Mechanics
70
71
72
Solutions
Main Menu
A particle of mass m falls from rest under gravity and the resistance to its motion is
mkv 2 , where v is its speed and k is a positive constant. Which of the following is the
correct expression for square of the velocity where x is the distance fallen?
(A) v 2 
g
1  e2kx 
k
(B)
v2 
g
1  e 2 kx 

k
(C)
v2 
g
1  e 2 kx 

k
(D) v 2 
g
1  e2kx 
k
A rock is projected vertically upwards from ground level. Assume air resistance is kv,
where v is the velocity of the rock and k is a positive constant. The rock falls back to
ground level under the influence of g, the acceleration due to gravity. Consider the
rock’s motion starting from maximum height. Let y be the displacement and t be the
time elapsed after the rock has reached maximum height. Assume the rock has a unit
mass. Which of the following is the correct expression for velocity?
(A) v 
g kt
(e  1)
k
(B)
v
g kt
(e  1)
k
(C)
v
k kt
(e  1)
g
(D) v 
k kt
(e  1)
g
A particle of mass m is moving in a straight line under the action of a force.
m
(6  10 x)
x3
What of the following is an expression for its velocity in any position, if the particle
starts from rest at x  1 ?
F
(A) v  
1
(3  10 x  7 x 2 )
x
(B)
v   x (3  10 x  7 x 2 )
(C)
v
1
2(3  10 x  7 x 2 )
x
(D) v   x 2(3  10 x  7 x 2 )
31
Year 12 Mathematics Extension 2
73
A particle of mass m is projected vertically upwards with an initial velocity of
u ms-1 in a medium in which the resistance to the motion is proportional to the square
of the velocity v ms-1 of the particle or mkv2. Let x be the displacement in metres of the
particle above the point of projection, O, so that the equation of motion is
x    g  kv 2  where g ms-2 is the acceleration due to gravity. Assume k = 10 and the
acceleration due to gravity is 10 ms-2.
Which of the following gives the correct expression for the time taken?
74
(A) t 
1
 tan -1 u  tan -1 v 
10
(B)
t
1
tan -1 v  tan -1 u 

10
(C)
t
1
tan -1 u  tan -1 v 

10
(D) t 
1
tan -1 v  tan -1 u 

10
A conical pendulum consists of a body P of mass m kg and a string of length l metres.
Point A is fixed and the body P rotates in a horizontal circle of radius r and centre O at
a constant angular velocity of  radians per second. OA is vertical and has a length of
h metres. The angle OAP is  radians. The body, P, is subject to a gravitational force
of mg newtons. The tension in the string is T newtons. Which of the following gives
the correct resolution of forces on P in the horizontal and vertical directions?
(A) T sin   mg  0 and T cos  mr 2
(B)
T sin   mg  0 and T cos  mr 2
(C) T cos   mg  0 and T sin   mr 2
(D) T cos  mg  0 and T sin   mr 2
32
Year 12 Mathematics Extension 2
75
Two light inextensible strings are attached to a particle of mass m. The particle
describes a horizontal circle with constant angular velocity  . Which of the following
gives the correct resolution of forces in the horizontal and vertical directions?
(A) T sin   T sin   m 2 r and T cos   T cos   mg
(B)
T sin   T cos   m 2 r and T sin   T cos   mg
(C) T sin   T sin   m 2 r and T cos   T cos   mg
(D) T sin   T cos   m 2 r and T sin   T cos   mg
76
A body of mass m kg is attached by two light rods AB and BC. Both rods are l metres
in length. Rod AB is hinged at point A and makes an angle  with the vertical shaft.
Rod BC is attached to a ring that can slide freely along the vertical shaft.
T1
T2
What are the tensions in the rods?
1
1
mg sec  ml 2  and T2   ml 2  mg sec 

2
2
1
1
T1   mg sin   ml 2  and T2   ml 2  mg sin  
2
2
(A) T1 
(B)
(C) T1 
1
1
mg sec  ml 2  and T2   ml 2  mg sec 

2
2
(D) T1 
1
1
mg sin   ml 2  and T2   ml 2  mg sin  

2
2
33
Year 12 Mathematics Extension 2
77
Two light inextensible strings PQ and QR each of length l are attached to a particle of
mass m at Q. The other ends P and R are fixed to two points in a vertical line such that
P is a distance l above R. The particle describes a horizontal circle with constant
angular velocity  .
P
l

l
r
Q

l
mg
R
What is the tension in the strings?
(A) T1 
m 2
m
(lw  2 g ) and T2  (lw2  g )
2
2
T1 
m 2
m
(lw  2 g ) and T2  (lw2  g )
2
2
(B)
(C) T1  m(lw2  2 g ) and T2  m(lw2  g )
(D) T1  m(lw2  2 g ) and T2  m(lw2  g )
78
79
What is the angle at which a road must be banked so that a car may round a curve with
a radius of 200 metres at 100 km/h without sliding? Assume that the road is smooth.
(A)
21.49
(B)
22.49
(C)
23.49
(D)
24.49
A conical pendulum consists of a body P of mass m kg and a string of length l metres.
A is fixed and the body P rotates in a horizontal circle of radius r and centre O at a
constant angular velocity of  radians per second. OA is vertical and OA = h metres.
The angle OAP is . The body, P, is subject to a gravitational force of mg newtons.
The tension in the string is T newtons. What is the angular velocity?
(A)
g
h
(B)
h
g
(C)
2
g
h
(D)
2
h
g
34
Year 12 Mathematics Extension 2
Polynomials
80
81
82
83
Solutions
Main Menu
Let  ,  and  be roots of the equation x3  x 2  2 x  5  0 . Which of the following
polynomial equations have roots   2 ,   2 and   2 ?
(A)
x3  7 x 2  14 x  3  0
(B)
x3  7 x 2  21x  3  0
(C)
x3  x 2  6 x  9  0
(D)
x3  2 x 2  6 x  9  0
The polynomial equation x3  5 x 2  6  0 has roots  ,  and  . Which of the
following polynomial equations have roots   1 ,   1 and   1 ?
(A)
x3  8 x 2  13x  0
(B)
x3  8 x 2  7 x  0
(C)
x3  3x 2  7 x  2  0
(D)
x3  2 x 2  7 x  2  0
The polynomial equation x3  3x 2  x  2  0 has roots  ,  and  . Which of the
following polynomial equations have roots 2     ,   2   and     2 ?
(A)
x3  6 x 2  44 x  49  0
(B)
x3  12 x 2  44 x  49  0
(C)
x3  3x 2  36 x  5  0
(D)
x3  6 x 2  36 x  5  0
Let  ,  and  be roots of the equation x3  3x 2  4  0 . Which of the following
polynomial equations have roots  2 ,  2 and  2 ?
(A)
x3  9 x 2  24 x  4  0
(B)
x3  9 x 2  12 x  4  0
(C)
x3  9 x 2  24 x  16  0
(D)
x3  9 x 2  12 x  16  0
35
Year 12 Mathematics Extension 2
84
The polynomial equation x3  3x 2  x  2  0 has roots  ,  and  . Which of the
1 1
1
following polynomial equations have roots ,
and ?

85
(A)
x3  x 2  3x  1  0
(B)
x3  2 x 2  3x  1  0
(C)
2 x3  x 2  3x  1  0
(D)
2 x3  2 x 2  3x  1  0


The polynomial equation P( x)  2 x 4  3x3  2 x 2  7 x  3 has roots  ,  ,  and  .
1 1 1
1
Which of the following polynomial equations have roots ,
,
and ?

(A)
2 x 4  3 x3  x 2  5 x  4
(B)
2 x 4  3 x3  x 2  5 x  4
(C)
3 x 4  7 x3  2 x 2  3 x  2
 

(D) 3x4  7 x3  2 x2  3x  2
86
87
The polynomial equation x3  x 2  2 x  5  0 has roots  ,  and  . Which of the
following polynomial equations have roots  2 ,  2 and  2 ?
(A)
x3  5 x 2  6 x  25  0
(B)
x3  5 x 2  14 x  25  0
(C)
x3  4 x 2  5 x  1  0
(D)
x3  4 x 2  5 x  1  0
The polynomial equation x3  5 x 2  6  0 has roots  ,  and  . Which of the
following polynomial equations have roots  2 ,  2 and  2 ?
(A)
x3  25 x 2  60 x  36  0
(B)
x3  25 x 2  60 x  12  0
(C)
x3  x 2  12 x  36  0
(D)
x3  x 2  12 x  12  0
36
Year 12 Mathematics Extension 2
88
The equation 24 x3  12 x 2  6 x  1 has roots  ,  and  .
What is the value of  if      ?
89
90
(A)

(C)
1
2
1
2
(B)
1
4
(D) 1
What are the zeros of the equation x 4  x 2  6 x  4  0 over the complex field given
that it has a rational zero of multiplicity 2?
(A)
1 , 1  5i and 1  5i
(B)
1 , 1  3i and 1  3i
(C)
1 , 1  5i and 1  5i
(D)
1 , 1  3i and 1  3i
The polynomial P( x)  x 4  ax 2  bx  28 has a double root at x  2 .
What are the values of a and b?
(A) a  11 and b  12
a  5 and b  12
(C) a  11 and b  12
(D) a  5 and b  12
(B)
91
92
The polynomial P( x)  x5  3x4  4 x3  4 x2  3x 1 has x  1 as a root of multiplicity
3 and x  i as a root. Which of the following expressions is a factorised form of P ( x )
over the complex numbers?
(A)
P( x)  ( x  1)3 ( x 1)( x  1)
(B)
P( x)  ( x 1)3 ( x 1)( x  1)
(C)
P( x)  ( x  1)3 ( x  i)( x  i)
(D)
P( x)  ( x 1)3 ( x  i)( x  i)
What are the values of real numbers p and q such that 1  i is a root of the equation
z 3  pz  q  0 ?
(A)
p  2 and q  4
(B)
p  2 and q  4
(C)
p  2 and q  4
(D)
p  2 and q  4
37
Year 12 Mathematics Extension 2
Harder Extension 1 topics
93
Solutions
Main Menu
Two equal circles touch externally at B. XB is a diameter of one circle. XZ is the
tangent from X to the other circle and cuts the first circle at Y.
Z
Y
X
B
A
Which is the correct expression that relates XZ to XY?
(A) 3XZ  4 XY
(B) XZ  2 XY
94
(C)
2 XZ  3XY
(D)
2 XZ  5 XY
What is the derivative of sin 1 x  1  x2 ?
(A)
(B)
(C)
(D)
1 x
1 x
1 x
1 x
1 x
1 x
1 x
1 x
38
C
Year 12 Mathematics Extension 2
n
95
Using the binomial theorem (1  x) n  nC0  nC1 x1  nC2 x 2  ...  nCn x n   nCk x k
k 0
which of the following expressions is correct?
n
1
n(n  1)(n  2)...(n  k ) 1

(A) (1  ) n  
n
nk
k!
k 0
(B)
n
1
n(n  1)(n  2)...(n  k )
1
(1  )n  

k
n
n
(k  1)!
k 0
(C)
n
1
n(n  1)(n  2)...(n  k  1) 1
(1  ) n  

n
nk
k!
k 0
n
1
n(n  1)(n  2)...(n  k  1)
1

(D) (1  ) n  
k
n
(k  1)!
n
k 0
96
The labor party conducted a survey for the 2010 election. The ratio of the votes in
three seats X, Y and Z was 4:3:2 respectively. The percentage of votes for Ms Gillard in
these seats was 60%, 30% and 90% respectively. Ten voters were chosen at random,
what is the probability that Ms Gillard gained at least eight votes?
(A) 0.1672897536
(B) 0.2509346304
(C) 0.3345795072
(D) 0.418224384
97
A coin is tossed 20 times. What is the probability of obtaining at most 3 heads?
(A) 0.0000029
(B) 0.0002
(C) 0.0013
(D) 0.0059
98
1
What is the solution to the equation tan -1 4 x   tan -1 3x   tan -1   ?
7
(A)
x
1
2
or x 
7
7
(B)
x
1
2
or x 
3
3
(C)
x
1
1
or x 
3
4
(D)
x  3 or x  4
39
Year 12 Mathematics Extension 2
99 What is the solution to the inequation 2sin3x  1 if 0  x  2 ?
Hint: Use a sketch.
(A)
(B)
(C)
(D)

6

6

18

18
x
5 13
17 25
29
x
x
,
,
6
6
6
6
6
x
7 13
20 25
31
x
x
,
,
6
6
6
6
6
x
5 13
17 25
29
x
x
,
,
18 18
18
18
18
x
7 13
20 25
31
x
x
,
,
18 18
18
18
18
100 What is the solution to the inequation
x(5  x)
 3 ?
x4
2  x  4 or x  6
(B) 1  x  4 or x  5
(A)
4  x  6 or x  2
(D) 4  x  5 or x  1
(C)
101 A rock is projected to just clear two poles of height h metres at distances of b and c
metres from the point of projection. If v is the velocity of the projection at an angle 
to the horizontal. Which of the following is the correct expression for square of the
velocity?
(A) v 2 
2(b  c) tan 
g sec2 
(B)
v2 
2(b  c) tan 
g sec2 
(C)
(b  c) g sec2 
v 
2 tan 
2
(D) v 2 
(b  c) g sec2 
2 tan 
40
Related documents