Download Name____________________________________

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Name____________________________________
Date___________________
Determine if the triangles are congruent. If so, state the postulate or theorem that proves it.
1.
2.
3.
Congruent? __________
Congruent? __________
Congruent? __________
If yes, why? _________
If yes, why? _________
If yes, why? _________
4. Proof Complete the proof.
GIVEN: HI  JK ,
IJ  KH
PROVE: HIJ  JKH
Statements
1. _______________________
2. _______________________
Reason
1. Given
2. Given
3.
_______________________
3. Reflexive property of Congruence
4.
_______________________
4. SSS Congruence Postulate
5. Proof Complete the proof.
GIVEN: WX  YX ,
Z
I is theImidpoint of WY .
PROVE: WXZ  YXZ
I
Statements
1. _______________________
Reason
1. Given
2. _______________________
2. Given
3. _______________________
3. Definition of Midpoint
4. _______________________
4. Reflexive property of Congruence
5. _______________________
5. SSS Congruence Postulate
Decide whether enough information is given to prove that the triangles are congruent. If there is enough
information, state the congruence postulate or theorem you would use.
6. ABC, FEC
7. STX, VUW
8. MNO, PQR
State the third congruence (angle or side) that must be given to prove
that ABC  FED using the indicated postulate or theorem.
For each problem, redraw the triangles (split apart) and mark them up.
9. GIVEN: BC  ED, AC  FD , _______  _______ Use the SAS Congruence Postulate.
10. GIVEN: AB  FE , AC  FD , _______  _______ Use the SSS Congruence Postulate.
11. GIVEN: BC  ED,  B is a right angle and  B   E, _______  _______Use the HL Congruence
Theorem.
12. Proof Complete the proof.
GIVEN: QS  PR , PS  RS , QR RS
PROVE: PRS  QSR

Statements
1. QS  PR ,
Reasons
1. Given
2.
2. Given
PS  RS , QR RS
3.  S and  R are right angles.
4. ___________________________
RS  RS
6. PRS  QSR
5.
3. ___________________________
4. Definition of a right triangle
5. ___________________________
6. ___________________________
13. Proof Complete the proof.
GIVEN: OM  LN , ML  MN,
PROVE: OML  OMN R
Statements
1. OM  LN
2. _______________________
3. _______________________
4. ML  MN
Reasons
1. Given
5. OM OM
6. OML  OMN
5. ________________________________
6. ________________________________
2. If 2 angles are, then they form 4 rt.  s .
3. Right Angle Congruence Theorem
4. ________________________________
Related documents