Download Warm up - fortneyphs

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Warm up
Simplify
1) a + 4b - 3a - b
4) (-4a2b)(3ab3)
2) 2(x - 3) - (4x - 5)
3) 3x(4x - 7) + x(x + 5)
5) 20x3y4
-5x2y2
Unit 2: Polynomials
Polynomial - algebraic expression formed by adding or subtracting terms
Term - the product of a number and possibly one or more variables.
Examples: Term
Coefficient
Variable
Degree of a Term - sum the exponents of the variables
Example:
Degree of a Polynomial - the degree of the highest degree term
Example:
Complete the Table
Polynomial
Number
of Terms
6
Classified by
Number of Terms
Degree
Classified
by Degree
3x
4x + 2
x2 + 4x + 1
3x3 + x2 - x - 7
Practice: p. 131: #1, 2, 3, 7, 8, 12, 16
Warm up
Simplify
1) 2x(3x - 4) - (x + 1)
2) (2a2b)(-3ab2)
Multiplying Binomials
Examples: Expand and Simplify
1) (2x + 4)(3x + 1)
2) (x + 1)(x + 2)
3) (3a + b)(a - 4b)
4) 3(2x - 1)(x - 4)
5) 2(3y + 2)(y - 1) - (y - 2)(2y + 1)
p. 137: #1 – 5 (column 1), 8, 12
3) (4x3y)2
2y2
Warm up
Expand and Simplify
1) (m - 1)(m - 7)
2) 2(3j - 1)(4j +2)
3) 2x(3x + 4) - (6x + 5)(x - 1)
Special Products
Examples: Expand and Simplify
1) (3x + 1)2
2) (a - 3)2
Squaring binomials results in a perfect square trinomial.
In general: (a + b)2 =
(a - b)2 =
Expand and Simplify
3) (2x + 5)(2x - 5)
Multiplying identical binomials, except for the sign, results in a difference of squares.
In general, (a - b)(a + b) =
4) Simplify
2(3x + 4)2 - (4x + 5)(4x - 5)
p. 142: #3, 4 - 8, 18 (a, c, e, ... for all of them), 20
Common Factoring
To factor an expression is to write it as a product
Example 1: Factor by factoring out the greatest common factor
a) 3a - 9
b) x2 + 2x
c) 5a2 + 10a
d) 2x3 + 6x2 - 12x
e) 10x3 - 15x2
f) 3x2y + 12xy
g) 15a3b4c + 20a2b5c3
Example 2: Factors can be polynomials sometimes
1) a(2x+1)+b(2x+1)
2) 2(a+b)-3c(a+b)
Example 3: Factor by grouping
1) bx+3x+by+3y
p. 150 #1 - 4 (every other part), 5, 7
2) 9m +12 - 15m2-20m
Warm up
Factor by factoring out the greatest common factor.
1) 5b - 10
2) -8a + 12
3) 14x4 - 21x3
4) 6a5b4 - 12a3b3 + 18a4b2
Factoring Trinomials: x2 + bx + c
(x + 4)(x + 2) =
Steps for factoring trinomials of the form x2 + bx + c
1) Write two brackets with x at the front of each.
2) Fill in two numbers that 3) Check by expanding.
Examples: Factor
x2 - 4x + 3
x2 + 14x + 40
x2 - 7x + 12
a2 - 4a - 21
-3n2 + 3n + 90
x2 + 2xy - 48y2
p. 156 #2 - 6 (first column), 8, 10, 11, 12
Warm Up
Factor
a) x2 - x - 6
b) x2 + x – 6
c) 2x2 - 18x + 40
Factoring Harder Trinomials
Factor completely
4x2 - 8x - 12
common factor
sum & product
Not so tricky... but! Factor 2n2 + 7n + 6
1) Factor 2n2 + 7n + 6 using a chart
2) Factor 2n2 + 7n + 6 using decomposition
Examples: Factor
a) 3a2 - 17a + 20
b) 6p2 + 11p – 10
c) 8n2 - 13n – 6
d) 16n2 - 26n - 12
Question:
2x - 5 is a factor of 2x2 + 9x - 35. What is the other factor?
How can you check to see if you have factored correctly?
p. 163 #1 - 4 (first column)
Warm up
Factor
1) -3x2 - 12x
2) 2x2 - 8x - 42
3) 5x2 + x - 6
Harder Trinomials Continued
Factor
1) 8x2 -10xy - 3y2
2) 10r4 - 22r2 + 4
3) -20g2 - 34g - 6
Today's Practice Problems
p. 163 # 4 (middle column), 5, 8 ,9
Warm up
Factor
1) x2 - 6x + 9
2) 4x2 + 12x + 9
Perfect Square Trinomials
Factor
1) t2 -12t + 36
2) 25y2 + 40yz + 16z2
Pattern: a2x2 + 2abx + b2 = (ax + b)2
a2x2 - 2abx + b2 = (ax - b)2
Difference of Squares
Factor
x2 - 25
Pattern: a2x2 - b2 = (ax + b)(ax - b)
Factor
1) 49y2 - 36
2) 36 - 9k2
4) a4 – 16
5) (x + 3)2 - 25
p. 167 #1 - 3 (first column), 6 - 7 (a, c, e...), 8
3) 28x2 - 175y2
Related documents