Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Alg 3 1.10 1 1.10 Imaginary Numbers Definition: i = 1 ex. 9 i is the “imaginary unit” in general: b POWERPOINT 9 1 2 3 3i b 2 1 3 1 (i 3 )2 = i2 ( 3 )2 = -3 SIMPLIFYING EXPRESSIONS WITH i 1) 81 2) 121 14 21 4) 8i 3i 3) 5) -2i -5i 6) 9 4 EVALUATING POWERS OF i i1 = i5 = i2 = i6 = i3 = i7 = i4 = i8 = i 3 bi is a “pure imaginary number” bi i2 = -1 ex. (3i)2 = 32 i2 = -9 i9 etc. 6) i12 = 7) i17 = 8) i23 = 9) i26 = SOLVING EQUATIONS 10) x2 + 81 = 0 11) x2 + 72 = 0 Alg 3 1.10 2 PRACTICE 12) 225 14) 15 40 13) 24 15) (4i)(-8i) 16) i 21 17) i19 18) x2 7 0 19) x 2 24 0 The Set of Complex Numbers General Form: a + bi a, b are real numbers, i is the imaginary unit All real numbers are complex numbers (b = 0, therefore a + bi = a) All pure imaginary numbers are complex numbers (a = 0, therefore a + bi = bi) Alg 3 1.10 3 Equal Complex Numbers: 2 complex numbers are equal only if their real parts are equal AND their imaginary parts are equal. a + bi = c + di if and only if a = b and c = d 1) 5x - 3yi = 2+ 9i Real: 5x = 2 2) 4x + 9yi = 12 ; Imaginary: -3y = 9 Adding Complex Numbers: add the real parts and add the imaginary parts 3) (8 + 7i) + (-12 + 11i) 4) (-7 + 4i) + (9 - 6i) Subtracting Complex Numbers: subtract the real parts and subtract the imaginary parts 5) (-7 + 4i) - (3 + 2i) 6) (9 - 6i) - (12 + 2i) Multiplying Complex Numbers: FOIL 7) (8 + 5i)(2 - 3i) 8) (2 + 3i)(3 - 4i) 9) (-6 + 2i)(5 - 3i) 10) (-5 + 6i)2 Alg 3 1.10 4 1.10 Simplifying Expressions with Complex Numbers A simplified fraction has no i in the denominator. Why? Pure Imaginary Number in the Denominator 1) 2 8i 3i 2) 3 7i 2i Complex Number in the Denominator 3) 1 6 3i conjugates complex conjugates same terms, different sign x- 3,x+ 3 take the product (x - 3 )(x + 3 ) x2 + x 3 - x 3 - 3 x2 - 3 6 + 3i, 6 - 3i (6 + 3i)(6 - 3i) 36 - 18i + 18i - 9i2 45 product is real, rational number product is real number 4) 1 9 7i 5) 2 3x 8 yi 6) 3 9i 4 2i 7) 4 5i 3 7i Multiplicative Inverse = Reciprocal Alg 3 1.10 5 Multiplicative Inverse = ? Don’t forget to rationalize! 8) 7 + 2i 9) 3i 2 4 i 10) 8 - 2i Practice 7 13i 2i 11) Simplify. 5 3 i 12) Simplify. 13) Simplify. 4 i 2 i 2 14) (5 - 7i)(5 + 7i) Alg 3 1.10 6 ALGEBRA REVIEW SHEET 1.10 Simplify each of the following please. 81 (1) (2) (13) 4i 3 3i 13 15 10 (14) 3 4i 5 2i (15) 3 4i 5 2i (3) 3 5 3 5 (4) 9 25 (5) 4 12 2 3 (16) 3 4i 5 2i (17) 2 7i 3 4i 7 6i 2 (18) 4 3i 14 21 (6) (7) 4i 2 16 (19) 2 5 i (8) i 3 i 2 3 (20) 2 3i 3 123 (9) i (10) i (11) i (12) 57 2 i4 i3 i5 i7 (21) 1 i (22) (23) (24) 2 4 2 3 4 3i 5 2i 6 2 6 2 4 i 1 + 2i 3 i 1 3i 5i 9 Alg 3 1.10 7 ALGEBRA REVIEW SHEET ANSWERS 1.10 (1) 9i (13) 7i (2) 5 6 i (14) 8 + 2i (3) 45i (15) 2 + 6i (4) 15 (16) 23 + 14i (5) 48 (17) 6 3i (6) 6i 3 (18) 7 + 24i (7) 32 (19) 0 (8) i (20) 46 + 9i (9) i (21) 1 i 4 (10) i (22) 14 23i 29 (11) 0 (23) 2 3 (12) i (24) 3 i 5