Download Summary formula sheet for simple linear regression Slope b = (Y

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Summary formula sheet for simple linear
regression
_
_
_
Slope b = ! (Yi -Y)(Xi -X) / ! (Xi -X)2
_
Variance 5 2 / ! (Xi -X)2
_
_
Intercept a= Y - b X _
2
1
X _
2
Variance of a [ n + !
]
5
2
(Xi -X)
Estimated mean at X_ 0 a + b X0
(X0 -X)_2
1
2
Variance [ n + !
]
5
2
(Xi -X)
Estimated individual at _X0 a + b X0
(X0 -X)_2
1
2
Variance [1 + n + !
]
5
(Xi -X)2
_
Total SS = ! (Yi -Y)2
Regression
_ SS =_
_
2
[ ! (Yi -Y)(Xi -X)] / ! (Xi -X)2
Error SS = Total SS - Regression SS
R2 = Regression SS/ Total SS = "proportion
explained"
MSE = error mean square = estimate of 5 2
= Error SS/ df
df= degrees of freedom = n-2 for simple
linear.
Example
Data points (x1 ,y1 ), (x2 ,y2 ), ...., (xn ,yn )
_ (1,5), (2,7),_ (3,9), (4,6), (5,8)
x = 15/5=3, y = 7
Corrected sum of squares for x:
n
_
!(xi - x)2 = Sxx = (1-3)2 +...+(5-3)2 = 10
i=1
Corrected sum of squares for y:
n
_
!(yi -y)2 = Syy = (5-7)2 +...+(8-7)2 = 10
i=1
Corrected sum of cross products = Sxy =
n
_
_
!(xi - x)(yi -y) =
i=1
(-2)(-2)+(-1)(0)+...+(2)(1) = 5 =
__
!xi yi -n x y = 110-5(3)(7)
n
i=1
Slope: b = Sxy /Sxx = 5/10 = 0.5
Intercept:
_
_
y - b x = 7-0.5(3) = 5.5
^
y=5.5
+ 0.5x
y
y^
r=y- y^
5
6
-1
7
6.5
0.5
9
7
2
6
7.5
-1.5
!ri2 = "Error sum of squares" =
8
8
0
n
i=1
SSE = 1+0.25+4+2.25=7.5
SSE is also Syy - S2xy /Sxx = Syy - b2 Sxx =
10-52 /10
Variance of b:
MSE/Sxx œ 2.5/10 = 0.25.
ÈMSE/Sxx is called "standard error" of b.
Task: test H0 : true slope is 0
t = b/È0.25 = 1 which is not an
unusual t.
data a; input x y @@; cards;
15
27
39 46 58
;
proc reg; model Y =X / p;
run;
Dependent Variable: y
Analysis of Variance
Source
DF
Model
1
Error
3
Corr Total 4
Root MSE
Dependent Mean
Coeff Var
Sum of
Squares
2.50000
7.50000
10.00000
1.58114
7.00000
22.58770
Mean
Square F Value
2.50000
1.00
2.50000
R-Square
Adj R-Sq
Pr > F
0.3910
0.2500
0.0000
Parameter Estimates
Variable
Intercept
x
DF
1
1
Parameter Standard
Estimate
Error t Value
5.50000 1.65831
3.32
0.50000 0.50000
1.00
Output Statistics
Pr > |t|
0.0452
0.3910
Obs
Dep Var
y
Predicted
Value
Residual
1
2
3
4
5
5.0000
7.0000
9.0000
6.0000
8.0000
6.0000
6.5000
7.0000
7.5000
8.0000
-1.0000
0.5000
2.0000
-1.5000
0
Related documents