Download references

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
REFERENCES
1. Abdu-Raddad, L. J., Patnaik, P., and Kublin, J.G. (2006), Dual infection with HIV
and Malaria fuels the spread of both diseases in Sub-Saharan Africa, Science, 314,
1603-1606.
2. Alexander, M. E., Bowman, Moghadas, S. M., Summers, R., Gumel, A. B. and Sahai,
B. M. (2004), A vaccination Model for Transmission Dynamics of Influenza, SIAM
Journal on Applied Dynamical Systems., 3, 503-524.
3. Anderson, R.M. and May, R.M. (1991), Infectious Diseases of Humans: Dynamics
and Control, Oxford University Press, Oxford UK.
4. Aparicio, Juan P. and Hernandez, Julio C. (2006), Preventive Treatment of
Tuberculosis Through Contact Tracing, Mathematical Studies on Human Disease
Dynamics: Emerging Paradigms and Challenges, Contemporary Mathematics, 410,
17-29.
5. Aron, J.L. and May, R.M. (1982), The population Dynamics of Malaria, The
Population Dynamics of Infectious Diseases: Theory and Applications, R.M.
Anderson, ed., Chapman and Hall, London, 139-179.
6. Banerjee, S., Sarkar, R.R. (2008), Delay-induced Model for Tumor–Immune
Interaction and Control of Malignant Tumor Growth, Bio systems, 91, 268–288.
7. Blanchard, P. Devaney, R. L. and Hall, G. R. (2006), Differential Equations, London:
Thompson, 96–111.
8. Boer, R.D., Hogeweg, P. (1986), Interactions Between Macrophages and T-
Lymphocytes: Tumor Sneaking Through Intrinsic to Helper T Cell Dynamics,
Journal of Theoretical Biology, 120, 331–351.
157
9. Boer, R.D., Hogeweg, P., Dullens, H., Weger, R.D., Otter, W.D. (1985), Macrophage
T-Lymphocyte Interactions in the Anti-Tumor Immune Response: A Mathematical
Model, Journal of Immunology, 134, 2748–2758.
10. Brauer F., Castillo-Chavez C. (2001), Mathematical Models in Population Biology
and Epidemiology, Springer Verlag.
11. Bruce-Chwatt, L.J. (1968), Movements of Populations in Relation to Communicable
Disease in Africa, East African Medical Journal, 45, 266-275.
12. Byrne, H., Cox, S., Kelly, C. (2004), Macrophage-Tumor Interactions: In Vivo
Dynamics, Discrete Continuous Dynamical Systems - Series B, 4, 81-98.
13. Butler, G., Freedman, H. I., Waltman, P., (1986), Uniformly Persistent System,
Proceedings of American Mathematical Society, 96, 425 – 429.
14. Capasso, V., Serio G. (1978), A Generalization of the Kermack–Mckendrick
Deterministic Epidemic Model, Mathematical Biosciences, 42, 43–61.
15. Chilundo, B., Sundby J. and Aanestad, M. (2004), Analyzing the Quality of Routine
Malaria Data in Mozambique, Malaria Journal, 3, 1-11.
16. Chinviriyasit S. and Chinviriyasit, W. (2007), Global Stability of an SIQ Epidemic
Model, Kasetsart Journal (Natural Science), 41, 225 – 228.
17. Chitnis, N., Cushing, J.M. and Hyman, J.M. (2006), Bifurcation Analysis of a
Mathematical Model for Malaria Transmission, Siam Journal of Applied
Mathematics, 67, 24-45.
18. Ciupe, S. M., Ribeiro, R. M., Nelson, P. W. and Perelson, A. S. (2007), Modeling the
Mechanisms of Acute Hepatitis B Virus Infection, Journal of Theoretical Biology,
247, 23–35.
158
19. Derouich, M. and Boutayeb, A. (2008), An Avian Influenza Mathematical Model,
Applied Mathematical Sciences, 2, 1749-1760.
20. Diekmann, O, Heesterbeek, J., Metz, J. (1990), On the Definition and the
Computation of the Basic Reproductive Ratio R0 in Models of Infectious Diseases in
Heterogeneous Populations, Journal of Mathematical Biology, 28, 356-382.
21. Dietz, K. (1988), Mathematical Models for Transmission and Control of Malaria, In:
W. Wernsdorfer and I. McGregor (Eds.), Principles and Practice of Malariology,
Churchill Livingstone, Edinburgh, 1091-1133.
22. Dingli, D., Cascino, M., Josic, K. Russell, S. and Bajzer, Z. (2006), Mathematical
Modeling of Cancer Radiovirotherapy, Mathematical Biosciences, 199, 55-78.
23. Driessche, P. Van Den, Watmough, J. (2002), Reproduction Numbers and Sub-
Threshold Endemic Equilibria for Compartmental Models of Disease Transmission,
Mathematical Biosciences, 180, 29-48.
24. Eikenberry, S., Hews, S., Nagy, J.D., Kuang, Y. (2009), The Dynamics of a Delay
Model of Hepatitis B Virus Infection with Logistic Hepatocyte Growth,
Mathematical Biosciences and Engineering, 6, 283–299.
25. El-Gohary A., Al-Ruzaiza A. (2007), Chaos and adaptive control in two prey, one
predator system with nonlinear feedback, Chaos, Solitons & Fractals, 34, 443–453.
26. Emerson, H. (1922), The Influence of Epidemiology on Present Day Methods of
Control of Communicable Disease, read before the Vital Statistics Section of the
American Public Health Association at the Fifty-first Annual Meeting, Cleveland.
27. Eykhoff, P. (1974), System Identification: Parameter and State Estimation,
Chichester, England.
159
28. Ferguson, N. M., Fraser, C., Donnelly, C. A., Ghani, A. C. and Anderson, R. M.
(2004), Public Health Risk from the Avian H5N1 Influenza Epidemic, Science, 304,
968-969.
29. Freedman, A., Tao, Y. (2003), Analysis of a Model of a Virus that Replicates
Selectively in Tumor Cells. Journal of Mathematical Biology, 47, 391-423.
30. Freedman H.I., Rai, B. (1995), Can Mutualism Alter Competitive Outcome? A
Mathematical Analysis, Rocky Mountain Journal of Mathematics, 25, 217-229.
31. Freedman, H.I., Rai, B. (1987), Persistence in a predator-prey-competitor-mutualist
model.In: Proceedings of this Eleventh International Conference on Nonlinear
Oscillations. (Eds.: M. Farkas, V. Kertesz and G. Stepan). Janos Bolyai Math. Soc.,
Budapest, 73–79.
32. Ghosh, M., Chandra, P., Sinha, P., Shukla, J. B. (2004), Modeling the Spread of
Carrier Dependent Infectious Diseases with Environmental Effect, Applied
Mathematics and Computations, 152, 385-402.
33. Ghosh, M., Chandra, P., Sinha, P., Shukla, J. B. (2005), Modeling the Spread of
Bacterial Disease with Environmental Effect in a Logistically Growing Human
Population, Nonlinear Analysis: Real World Applications, 7, 341-363.
34. Golding, J. (1992), Oxford Textbook of Public Health, 2nd Edn. Volume 1:
Influences of Public Health.
35. Gourley, S. A., Kuang, Y. and Nagy, J. D. (2008), Dynamics of a Delay Differential
Equation Model of Hepatitis B Virus Infection, Journal of Biological Dynamics, 2,
140–153.
160
36. Hahn, W., Weinberg, R. (2002), Modelling the Molecular Circuitry of Cancer, Nature
Reviews Cancer, 2, 231–241.
37. Hale, J.K., (1980), Ordinary differential equations, 2nd Ed., Kriegor, Basel.
38. Hale, J., Lunel, S.V. (1993), Introduction to Functional Differential Equations.
Springer-Verlag, New York.
39. Hannahan, D., Weinberg, R. (2000), The hallmarks of cancer Cell, 100, 57–70.
40. Hassel, M.P. (1981), Arthropod Predator Prey system, Theoretical Ecology:
Principals and Applications, 2nd edn (ed. R. M. May), Oxford UK, Blackwell Science,
105-131.
41. Hethcote, H. W. (2000), The Mathematics of Infectious Diseases, SIAM Review, 42,
599–653.
42. Hethcote, H.W., Zhien, M., Shengbing, L. (2002), Effects of Quarantine in Six
Endemic Models for Infectious Diseases, Mathematical Biosciences, 180, 141-160.
43. Ho, D.D., Neumann, A.U., Perelson, A.S., Chen, W., Leonard, J.M., Markowitz, M.
(1995), Rapid Turnover of Plasma Virions and CD4 Lymphocytes in HIV-1
Infection, Nature, 373, 117-122.
44. Huang, G., Ma, W., Dietz, Y. (2011), Global Analysis for Delay Virus Dynamics
Model with Beddington-DeAngelis Functional Response, Applied Mathematics
Letters, 24,1199-1203.
45. Huang, G., Ma, W. and Takeuchi Y. (2011), Global Analysis for Delay Virus
Dynamics
Model
with
Beddington-DeAngelis
Mathematics Letters, 24, 1199–1203.
161
Functional
Response, Applied
46. Iwami, S., Takeuchi, Y., Liu, X. N. (2007), Avian-Human Influenza Epidemic Model,
Mathematical Biosciences, 207, pp. 1-25.
47. Kasuya, H., Takeda, S., Nomoto, S., and Nakao, A. (2005), The potential of
Oncolytic Virus Therapy for Pancreatic Cancer, Cancer Gene Therapy, 12, 725-736.
48. Kermack, W. O. and A. G. McKendrick (1932), Contributions to the mathematical
theory of epidemics-II. The problem of endemicity, Proceedings of the Royal Society
138A, 55-83. (reprinted in Bulletin of Mathematical Biology 53, 57-87, 1991)
49. Kim, K. Ik and Lin, Z. (2010), Avian-Human Influenza Epidemic Model with
Diffusion Nonlinear analysis: Real World Applications,11, 313-322.
50. Kirn, D. H. and McCormick, F. (1996), Replicating Viruses as Selective Cancer
Therapeutics, Mol. Med. Today, 2, 519-527.
51. Kirschner, D., Panetta, J. (1998), Modelling Immunotherapy of the Tumor–Immune
Interaction, Journal of Mathematical Biology, 37, 235–252.
52. Koella, J.C. (1991), On the Use of Mathematical Models of Malaria Transmission,
Acta Tropica, 49, 1-25.
53. Kolev, M. (2003), Mathematical Modeling of the Competition Between Tumors and
Immune system Considering the Role of the Antibodies, Mathematical and Computer
Modeling, 37, pp.1143–1152.
54. Kuang, Y. (2004), Biological Stoichiometry of Tumor Dynamics: Mathematical
Models and Analysis, Discrete and Continuous Dynamical Systems - Series B, 4, 221240.
162
55. Kuznetsov, V. and Taylor, M. (1994), Nonlinear Dynamics of Immunogenic Tumors:
Parameter Estimation and Global Bifurcation Analysis, Bulletin of Mathematical
Biology, 56, 295–321.
56. Li, J., Welch, R.M., Nair, U.S., Sever, T.L., Erwin, D.E., Cordon-Rosales, C. and
Padilla, N. (2002), Dynamic Malaria Models with Environmental Changes, in
proceedings of the Thirty-Fourth Southeastern Symposium on System Theory,
Huntsville, 396-400.
57. Liu, W. M., Hethcote, H.W., Levin, S.A. (1987), Dynamical Behaviour of
Epidemiological Models with Nonlinear Incidence Rates, Journal of Mathematical
Biology, 25, 359-380.
58. Liu, W.M., Levin, S.A., Iwasa, Y. (1986), Influence of Nonlinear Incidence Rates
upon the Behaviour of SIRS Epidemiological Models, Journal of Mathematical
Biology, 23, 187-204.
59. López-vélez, R., Huerga, H., Turrientes, M.C. (2003), Infectious Diseases in
Immigrants from the Perspective of a Tropical Medicine Referral Unit,
The American journal of tropical medicine and hygiene, 69, 115–121.
60. Lundberg, A., Weinberg, R. (1999), Control of Cell Cycle and Apoptosis, European
Journal of Cancer, 35, 1886–1894.
61. Lyapunov, A. M. (1892), The General Problem of the Stability of Motion (in
Russian). Kharkov Mathematical Society (250 pp.), Collected Works II.
62. MacDonald, G. (1957), The Epidemiology and Control of Malaria, Oxford University
Press, London.
163
63. Martens, P. and Hall, L. (2000), Malaria on the Move: Human Population Movement
and Malaria Transmission, Emerging Infectious Diseases, 6,103–109.
64. McCormick, F. (2003), Cancer Specific Viruses and the Development of ONYX-015,
Cancer Biology and Therapy, 2, 157-160.
65. Min, L., Su Y. and Kuang, Y. (2008), Mathematical Analysis of a Basic Virus
Infection Model with Application to HBV Infection, Rocky Mountain Journal of
Mathematics, 38, 2008, 1–13.
66. Moghadas, S. M., Gumel, A. B. (2002), Global Stability of a Two-Stage Epidemic
Model with Generalized Non-Linear Incidence, Mathematics and Computers and
Simulation, 60, 107–118.
67. Nani, F., Freedman H.I. (2000), A Mathematical Model of Cancer Treatment by
Immunotherapy, Mathematical Biosciences, 163, 159-199.
68. Naresh, R., Pandey, S. and Misra, A. K. (2008), Analysis of a Vaccination Model for
Carrier Dependent Infectious Diseases with Environmental effects, Nonlinear
Analysis: Modelling and Control, 13, 331-350.
69. Nedelman, J. (1985), Introductory Review: Some New Thoughts About Some Old
Malaria Models, Mathematical Biosciences,73, 159-182.
70. Nowak, M. A., Bonheoffer, S., Hill, A. M. Boehme, R., Thomas, H. C. and McDade,
H. (1996), Viral dynamics in hepatitis B virus infection, Proceedings of Natural
Acad. Sci. USA, 93, 4398–4402.
71. Nowak, M.A., May, R.M. (2000), Virus Dynamics: Mathematical Principles of
Immunology and Virology, New York, Oxford.
164
72. Novozhilov, Artem S., Berezovskaya, Faina S., Koonin, Eugene V. and Karev
,Georgy P. (2006), Mathematical Modeling of Tumor Therapy with Oncolytic
Viruses: Regimes with Complete Tumor Elimination within the Framework of
Deterministic Models, Biology Direct, 1, 1-6.
73. Nowak, M.A., Bhangham, C.R. (1996), Population dynamics of immune responses to
persistent viruses, Science, 272, 74-79.
74. Preziosi, L. (2003), Modeling Cancer Growth, CRC-Press, Chapman Hall, Boca
Raton.
75. Prothero, R.M. (1977), Disease and Mobility: A Neglected Factor in Epidemiology,
International Journal of Epidemiology, 6, 259-267.
76. Ross, R. (1911), The prevention of malaria, John Murray, London.
77. Ross R. (1928), Studies on Malaria, London.
78. Rutherford, G. and Woo, J. (1988), Contact Tracing and the Control of Human
Immunodeficiency Virus, Journal of American Medical Association, 259, 3609-3610.
79. Sarkar, R., Banerjee, S. (2005), Cancer Self Remission and Tumor Stability - a
Stochastic Approach, Mathematical Biosciences, 196, 65–81.
80. Singh, K., Wester, W.C., Gordon, M. and Trenholme, G.M. (2003), Problems in the
Therapy for Imported Malaria in the United States, Archives of Internal Medicine,
17, 2027–2030.
81. Snow, R.W., Guerra, C.A., Noor, A.M., Myint, H.Y. and Hay, S.I. (2005), The
Global Distribution of Clinical Episodes of Plasmodium Falciparum Malaria, Nature,
434, 214-217.
165
82. Singh, S., Shukla, J. B., and Chandra, P. (2005), Modelling and Analysis of the
Spread of Malaria: Environmental and Ecological Effects, Journal of Biological
Systems, 13, 1-11.
83. Tao, Y., and Guo, Q. (2005), The competitive Dynamics between Tumor Cells, a
Replication-Competent Virus and an Immune Response, Mathematical Biology, 51,
37-74.
84. Times of India (28 August, 2011), Malaria on rise, 68 cases in seven months.
85. Usman, A., Cunningham, C., Jackson, T. (2005), Application of the Mathematical
Model of Tumor-Immune Interactions for IL-2 Adoptive Immunotherapy to Studies
on Patients with Metastatic Melanoma or Renal Cell Cancer, Undergraduate Math
Journal, 6, 1-23.
86. Vandermeer, J.H., Goldberg, D.E. (2003), Population Ecology: First Principles,
Princeton University Press, New Jersey.
87. Van den Driessche, P., Watmough, J. (2002), Reproduction Numbers and Sub-
Threshold Endemic Equilibria for Compartmental Models of Disease Transmission,
Mathematical Biosciences,180, 29-48.
88. Villasana, M. and Radunskaya, A. (2003), A Delay Differential Equation Model for
Tumor Growth, Journal of Mathematical Biology, 47, 270–294.
89. Wei, W., Ghosh, S.K., Taylor, M.E., Johnson, V.A., Emini, E.A., Deutsch, P., Lifson,
J.D., Bonhoeffer, S., Nowak, M.A., Hahn, B.H., Saag, M.S., and Shaw, M. (1995),
Viral Dynamics in Human Immunodeficiency Virus Type 1 Infection, Nature, 373,
117-122.
166
90. Wein, L.M., Wu, J.T., and Kirn, D.H. (2003), Validation and Analysis of a
Mathematical Model of a Replication-Competent Oncolytic Virus for Cancer
Treatment: Implications for Virus Design and Delivery, Cancer Research, 63, 1317–
1324.
91. Wikipedia, (2008), http://en.wikipedia.org/wiki/Mathematical_model
92. Wilson, M.E. (1998), Infectious diseases: An ecological perspective, British Medical
Journal, 311, 1681–1684.
93. Wodarz, D. (2003), Gene Therapy for Killing p53-Negative Cancer Cells: Use of
Replicating Versus Nonreplicating Agents, Human gene therapy, 14, 153-159.
94. Wodarz D., Komarova, N. (2005), Computational Biology of Cancer: Lecture notes
and Mathematical Modeling, Singapore, World Scientific Publishing Company.
95. Wodarz, D. (2001), Viruses as Antitumor Weapons: Defining Conditions for Tumor
Remission, Cancer Research, 61, 3501-3507.
96. Wu, J.T., Byrne, H.M., Kirn, D.H., Wein, L.M. (2001), Modeling and analysis of a
virus that replicates selectively in tumor cells, Bulletin of Mathematical Biology, 63,
731-768.
97. Wu, J.T., Kirn, D.H., and Wein, L.M. (2004), Analysis of a Three-Way Race
Between Tumor Growth, a Replication-Competent Virus and an Immune Response,
Bulletin of Mathematical Biology, 66, 605–625.
98. Yafia, R. (2006)a, Hopf bifurcation in a Delayed Model for Tumor–Immune System
Competition with Negative Immune Response, Discrete Dynamical Nature Society,
2006, 1-9.
167
99. Yafia, R. (2006) b, Stability of Limit Cycle in a Delayed Model for Tumor–Immune
System Competition with Negative Immune Response, Discrete Dynamical Nature
Society, 2006,1-13.
168
Related documents