Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Basic Trigonometric results and
trigonometric ratios of arbitrary angles
INTRODUCTION :
The word Trigonometry in its primary sense signifies the measurement of triangles. From
ancient times the Trigonometry also included the establishment of the relations which
subsist between the sides , angles and area of a triangle; but now it has a much wider
scope and embraces all manner of geometrical and algebraical investigations carried on
through the medium of certain quantities called trigonometrical ratios. In every branch of
Higher Mathematics, whether Pure or Applied, a knowledge of Trigonometry is of the
greatest value.
1.
DEFINITION OF ANGLE : Suppose that the straight line in the figure is capable of
revolving about the point O, and suppose that in this way it has passed successively from
the position OA to the position occupied by OB, OC, OD, …., then the
angle between OA and any position such as OC is measured by the
which the line OP has undergone in passing from its initial position
OA into its final position OC. Moreover the line OP may make any
number of complete revolutions through the original position OA
before taking up its final position. In Trigonometry angles are not
restricted as Geometry, but may be of any magnitude. The point O
is called the origin, and OA the initial line; the revolving line OP is known as generating
line or the radius vector.
2.
MEASUREMENT OF ANGLES : There are several ways of measuring angles in trigonometry.
The student is already familiar with the Sexagesimal Measure in which a right angle is
equal to 90. There is an absolute measure of an absolute angle which is called Circular
or Radian Measure. In this system one unit of angle (one radian) is the angle subtended
at the centre of a circle by an arc whose length is equal to the radius. Since the half
circumference of a circle of unit radius is . We must have c = 180 where the index c
180
signifies the circular measure. This is loosely written as = 180. Thus 1c
and
10
.
180
The student is advised to remember the following angles in radians.
c
Deg
30
45
60
90
120
135
150
Rad
6
4
3
2
2
3
3
4
5
6
180
210
225
240
270
300
315
330
360
7
6
5
4
4
3
3
2
5
3
7
4
11
6
2
We will be using Sexagesimal system (angles in degrees) in evaluation of trigonometric
ratios initially only after which angles will be in radians unless the contrary is specified.
3. DEFINITIONS OF TRIGONOMETRIC FUNCTIONS
For an angle between 0 and 90 we define
several trigonometric ratios to describe size or magnitude of the angle. Let the initial position
1
acquires a position OB given that BOA = .
to OA, we define
of the revolving line be OA and the revolving line
Choose a point P on OB and draw PM perpendicular
MP
OP
sin
, cos ec
OP
MP
OM
OP
cos
, sec
OP
OM
PM
OM
tan
, cot
OM
PM
We can easily note that
(i) the values of the above six ratios do not depend upon the choice of P (If P′ is some other
point and M′ is the foot of then OPM and OP′M′ are similar)
1
1
1
sin
cos
(ii)
, tan
cos ec
,sec
, cot
, cot
sin
cos
tan
cos
sin
(iii)
sin 2 cos2 1, 1 tan 2 sec2 , 1 + cot2 = cosec2
(follow by Pythogorous theorem)
Section –I Trigonometric transformations
1.
We are already familiar with transformations like
sin(90 ) cos ,
cos(90 ) sin
, tan(90 ) cot etc.
Let us now show that if is any arbitrary angle then
(i)
sin( ) sin
(ii)
cos( ) cos
(iii)
sin( 180 ) sin
(iv)
cos(180 ) cos
(v)
sin( 90 ) cos ,
(vi)
cos(90 ) sin
We will give circle proof for above transformations formulas
We will first of all assume that is a positive acute angle i.e. 0 90 or 0
2
and consider
the circle with centre O and radius r . Let A' OA is the horizontal diameter of the circle. Let the
revolving line make an angle with positive directions of
x axis .
Draw PM perpendicular to x axis and produce it to a point Q
on the circle. Then PM MQ and Q
2
is the point (r cos ,r sin ) . This is symbolically written as
r cos( ) r cos , r sin( ) r sin on
Cancelling r we get cos( ) cos , sin( ) sin
we can also get tan( ) tan ,
cot( ) cot , sec( ) sec
cos ec( ) cos ec from the second formula .
For instance tan( )
sin( ) sin
tan etc.
cos( ) cos
Now to prove (iii) and (iv) we again consider the same circle (see figure) produce the radius PO in the
opposite direction to reach the point Q on the circle
Note that OAQ 180 then OM ' OM , M ' Q MP . But co-ordinate sign convection wise Q
will have co-ordinates (r cos ,r sin ) .
This is symbolically written as r cos(180 ) r cos
r sin(180 ) sin . Thus cos(180 ) cos
Also tan(180 )
sin( 180 ) sin
tan .
cos(180 ) cos
From these relations we at once get
sin( 180 ) sin( 180)
sin( ) sin , cos(180 ) cos( 180)
cos( ) cos . Also tan(180 ) tan
To prove (v) and (vi) we again consider the circle let
AOP , OP r
POQ 90
Then OM r cos
PM r sin
OM ' PM r sin
QM ' OM r cos
Following sign conventions of co-ordinate geometry co-ordinates of Q are (r sin , r cos ) giving us
cos(90 ) sin , sin( 90 ) cos
3
Using above six transformations formula’s we can derive all types of transformations formula’s.
For example (270 ) sin( 180 90 ) sin( 90 ) cos
cos( 270 ) cos(180 90 )
cos(90 ) sin
tan( 270 ) cot
We will now show that all above results are true for arbitrary i.e. may be any angle.
If lies between 90 and 180 then 90
Now sin( 90 ) sin( 90 90 ) = cos(90 ) sin
sin( 90)
sin( 90 ) cos
if lies between 180 and 270 then 180
sin( 90 ) sin( 90 180 )
sin( 270 )
cos
cos( 180) cos
Thus sin( 90 ) cos in all cases geometrically it is easily seen as sin( 90) cos
We can show the validity of transformation formulas for an arbitrary angle θ directly also
We will first prove it for 90 θ 180 . If 90 θ 180 then the point P cos θ,sin θ lies in second
quadrant (see figure and note that cos θ 0,sin θ 0 )
If P moves in counter clockwise direction for an angle 180 then P reaches a point P in the fourth
quadrant. P has co-ordinates cos θ , sin θ . Note that cos θ 0, sin θ 0
cos θ 180 cos θ sin θ 180 sin θ as before
4
Again if P lies in third quadrant then P is cos θ ,sin θ while P is cos θ , sin θ in first quadrant
Finally if P lies in fourth quadrant then P is cos θ , sin θ
In all the cases we have
cos θ 180 cos θ , sin θ 180 sin θ
We can similarly show this fact for other transformation formulas. If an angle φ is more than 360 then
φ 360n θ where 0 θ 360 and n is a positive integer. Now T-ratio of φ will be same as
corresponding T-ratios of θ . For example
sin 180 φ sin 180 360n θ sin 180 θ sin θ
Thus sin 180 θ sin θ for arbitrary θ
The other transformation formulas are also true for all θ R . See more illustrations in 2(d)
2.
How to remember all transformation formulas easily ?:
Though we have proved all transformation formulas but have not discussed the way to remember all the
formulas. Let us discuss four important points in detail.
IInd
IIIrd
90 θ
θ
180 θ
90 θ
first
270 θ
180 θ
360 θ
270 θ
IVth
θ
(a).
Quadrant determination by assuming that θ is an acute angle. This is shown in the figure. As an
example if an angle is of the type 180 θ or 270 θ then it belongs to IIIrd quadrant.
(b).
Sign of Trigonometric functions : It is necessary to know the sign of signs of sines, cosines and
tangents only in various quadrants. The signs of cosec, sec and cot wil be same as that of
sin, cos and tan respectively.
sin +
All +
tan +
cos +
These signs convention is based up on co-ordinate geometry sign convention for above. In the
first quadrant all trigonometric functions are positive since x and y co-ordinates are both
positive. In the second sin θ is positive since y co-ordinate is positive. In the third tan θ is
positive since both x and y are negative and tan θ
sin θ
. In the fourth cossinθ is positive as
cos θ
x-coordinate is positive. We can remember it by recalling the AFTER SCHOOL TO COLLEGE
A of AFTER stands for all , S of school stands for sin θ
T of To stands for tan θ , C of College stands for cosθ
5
Thus, sin 210 0, cos 300 0
Since 210 belongs to third quadrant while 300 belongs to fourth. We can also say
sin 180 θ 0,cos θ 0
tan 360 θ 0 , sec 270 θ 0,cot 90 θ 0 etc.
( c).
The transformation formulas do not change the type of trigonometric function on both side of it
if transformation is being applied on an angle of the type θ ,180 θ ,360 θ . But it changes
from sin to cos, cos to sin, tan to cot, cot to tan, sec to cosec, cosec to sec
If transformation is being applied on an angle of the type 90 θ , 270 θ
Example :
If we want to simplify sin 180 θ we note that
(i) 180 θ belongs to third quadrant
(ii) sin 180 θ 0
(iii) No change in T-ratio will occur sin 180 θ sin θ
Again cos 270 θ sin θ . Since cos will change to sin and 270 θ belongs to fourth
quadrant where cos is positive. Further note cot θ cot θ . Thus we can remember all
formulas easily. We have the following long list of formulas.
SET I
SET II
sin θ sin θ
sin 180 θ sin θ
cos θ cos θ
cos 180 θ cos θ
tan θ tanθ
tan 180 θ tan θ
cot θ cot θ
cot 180 θ cot θ
sec θ sec θ
sec 180 θ sec θ
co sec θ co sec θ
co sec 180 θ co sec θ
SET III
SET IV
sin 180 θ sin θ
sin 360 θ sin θ
cos 180 θ cos θ
cos 360 θ cos θ
tan 180 θ tan θ
tan 360 θ tan θ
6
cot 180 θ cot θ
cot 360 θ cot θ
sec 180 θ sec θ
sec 360 θ sec θ
cosec 180 θ co sec θ
cos ec 360 θ cos ecθ
SET V
SET VI
SET VII
sin 90 θ cos θ
sin 270 θ cos θ
sin 270 θ cos θ
cos 90 θ sin θ
cos 270 θ sin θ
cos 270 θ sin θ
tan 90 θ cot θ
tan 270 θ cot θ
tan 270 θ cot θ
cot 90 θ tan θ
cot 270 θ tan θ
cot 270 θ tan θ
sec 90 θ cos ecθ
sec 270 θ cos ecθ
sec 270 θ cos ecθ
co sec 90 θ sec θ
co sec 270 θ sec θ
co sec 270 θ sec θ
TRIGONOMETRIC RATIOS OF ANY ARBITRARY ANGLE: If the angle is greater than 360, then the
T-ratios can be found by using the fact that,
sin(360 n + ) = sin ; cos(360 n + ) = cos ; tan(360 n + ) = tan ,
where “n” is an integer. The following steps may be used :Step I: Remove negative sign by using transformations (i)
Step II: Divide the angle by 360 and consider the T-ratio of the remainder.
Step III : Express the angle as 180 or 360 - , if it is not acute (use of 90 , 270 may
be avoided since in 180 , 360 and - cases, the T-ratio remains same).
We will illustrate it by examples
(i)
sin 900 θ sin 2 360 180 θ
sin 180 θ sin θ
cos 1360 θ cos 3 360 270 θ
cos 270 θ sin θ
(ii)
sin 840 = sin(360 2 + 120) = sin 120 = sin(180 – 60) = sin 60 =
(iii)
tan(-1200) = -tan 1200 = -tan(3 360 + 120) = -tan 120
= -tan(180 – 60) = -(-tan 60) = 3
3
2
(iv)
tan 7π θ tan 6π π θ tan π θ tan θ
(v)
π
2016π π
tan 2015 θ tan
θ (Bringing a multiple of 4 near 2015)
2
2
7
π
π
tan 1008π θ tan θ ( 1008π are 504 resolutions of line)
2
2
π
π
tan θ tan θ cot θ
2
2
Section –II Given one T-ratio with location of angle how to find other T-ratios
In earlier classes we have done that, given sin θ 3/ 5. Find cos θ , tan θ , cot θ ,sec θ etc. We used to
solve this problem quickly by constructing a triangle only.
And used to determine other T-ratios easily. This used to be a simple and routine problem in earlier
classes but at an advanced level it is to be supplemented by more concepts and rigour. For instance if
3
sin θ and 90 θ 180 then as cos θ 1 sin 2 θ
5
We have cos θ 1 sin 2 θ
cos θ 1 sin 2 θ 1
cos θ 0 cos θ cos θ
sin θ
3/ 5
9
4
Also tan θ
cos θ 4 / 5
25
5
TRIGONOMETRIC RATIOS OF 0, 90 AND SOME POSITIVE ACUTE ANGLES :
0
30
45
60
1
1
3
sin
0
2
2
2
1
1
3
cos
1
2
2
2
1
tan
0
1
3
3
Trigonometric ratios of angles which are multiples of
90
1
0
not defined
: If n is any integer then the angles
2
n
are of great importance in mathematic since sine and cosine become 1 or 0 at these
2
angles.
(i)
sin n = 0
(ii)
cos n = (1)n (iii)
tan n = 0
(iv)
sin(4n + 1) /2 = 1
(v)
sin (4n – 1) /2 = -1
(vi)
cos(2n + 1) /2 = 0
(vii)
tan (2n + 1) /2 is not defined.
8
Domain, Range of trigonometric functions:
T – Function
Domain
Range
sin x
R
[-1, 1]
cos x
R
[-1, 1]
tan x
R – {x : x = (2n + 1)/2} R
cot x
R – {x : x = n}
sec x
R – {x : x = (2n + 1)/2} (-, -1] [1, )
cosec x
R – {x : x = n }
R
(-, -1] [1, )
SOLVED EXAMPLES
1.
Show that
SOLUTION:-
sin( 90 ) cos(180 ) sec(180 )
1
tan( 270 ) sin( 360 )
,
cos(180 ) cos
sec(180 ) sec ,
tan( 270 ) cot
sin( 90 ) cos
sin( 360 ) sin
Thus LHS of above expression
2.
Show that (i)
cos ( cos )( sec )
1
cot ( sin )
sin( 2015 ) sin( 35 ) (ii)
sin( 2015 ) sin( 1800 215 )
SOL:- (i)
sin( 215 ) sin( 180 35 )
(ii)
sin( 600 )
tan( 60 )
cos(1680 )
600 360 240
LHS
sin( 35 )
1680 360 4 240
sin( 240 )
tan( 240 )
cos( 240 )
tan(180 60 ) tan( 60 )
3.
3
cos
sin( 2 )
2
Show that
3
cos ec
sec(8 )
2
sin 2 cos 2
9
SOL:-
3
cos
sin
2
sin( 2 ) sin
cos ec sec
2
sec(8 ) sec( ) sec
LHS
sin ( sin )
( sec ) sec
sin 2 cos 2
cos
2
4.
Show that sin 2015
SOL:-
The integer just less than 2015 which is divisible by 4 is 2012 . We write sin 2015
2012 3
sin
2
3
sin 1006
2
2
3
sin
cos
2
EXERCISE
1.
2.
3.
4.
5.
6.
7.
8.
9.
Find the radian measures corresponding to the following degree measures
15
240 (4)
530
(1)
(2)
(3)
3730
Find the degree measures corresponding to the following radian measures
3
5
7
(1)
(2)
-4
(3)
(4)
4
3
3
A wheel makes 360 revolutions in one minute .Through how many radians does it turn in one
second?
Find the degree measure of the angle subtended at the centre of a circle diameter 200 cm
by an are of length 22cm.
In a circle of diameter 40cm , the length of chord is 20cm. Find the length of minor arc of the
chord.
If, in two circles, arcs of the same length subtend angles of 60 and 75 at the centre , find the
ratio of their radii:
Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip
describes an arc of length:
(1)
10cm
(2)
15cm
(3)
21cm
Find the values of the other five trigonometric functions in each of the following problems:
1
3
(1)
(2) sin , lies in second quadrant.
cos , lies in third quadrant
2
5
4
13
(3)
(4)
tan , lies in third quadrant.
sec , lies in fourth quadrant.
3
5
show that
(1)
sin 3060 0 (2)
cos570
10
1
2
(3) sin 1845
1
2
(4)
(7)
(10)
(13)
(16)
10.
1
2
1
sin(330)
2
1
sin 765 =
(11)
2
1
cos 855
2
cos 1755
sin 4530
1
2
(5)
cos ec(1200)
(8)
sin 510
2
3
1
2
15
cot
1
4
(14)
cos(1125)
(17)
tan
(6)
tan 315 1
(9)
cos ec(1410) 2
1
11
6
3
(12)
tan
1
2
(15)
tan(585) 1
(18)
sin
13
. 3
3
3
5
3
2
Prove that :
1
2
(1)
sin 780 sin120 cos 240 sin 390
(2)
sin 300 cos 210 cos 300 sin 210 1
(3)
tan 720 cos 270 sin150 cos120
(4)
(5)
(6)
1
4
sin 600 cos390 cos 480 sin150 1
tan(225)cot (405) tan (765)cot 675 0
sin
8
23
13
35 1
cos
cos
sin
3
6
3
6 2
(7)
cos 24 cos55 cos125 cos 204 cos300
(8)
tan 225 cot 405 tan 765 cot 675 0
(9)
cos570 sin510 sin (330 cos(390) 0.
(10)
2sin 2
(12)
2sin 2
(14)
tan
(15)
3
2cos2 sec2 6
4
4
3
6
cos ec
7
cos2 0
6
3
1
2
(11)
sin 2
(13)
cot 2
6
6
11
2 3
17 3 4 3
2sin
cos ec 2 4cos 2
.
3
3 4
4
6
2
cos( x)cos( x)
cot 2 x
sin( x)cos x
2
11
cos2
3
cos ec
tan 2
4
1
2
5
3tan 2 6
6
6
11.
(16)
sin 180 A cot 90 A cos 360 A
sin A
tan 180 A tan 90 A
sin A
(17)
sin(180 )cos(90 ) tan(270 )cot (360 )
1
sin(360 )cos(360 )cos ec( )sin(270 )
(18)
cos ec(90 ) cot (450 )
tan(180 ) sec(180 )
2
cos ec(90 ) tan (180 )
tan (360 ) sec( )
(19)
3
3
sin cos cot
sin sin
cot
2
2
2
2
2
cos(2 )cos ec(2 ) tan
2
1.
(20).
sec cos cot
2
3
3
(21).
cos
x cos(2 x) cot
x cot(2 x) 1
2
2
In a ABC, prove that:
C
A B
(1)
cos(A + B) + cos C = 0
(2)
cos
sin
2
2
A B
C
(3)
tan
cot
2
2
Answers
1.
2.
(1)
(1)
3.
12
7.
(1)
8.
(1)
(2)
(3)
(4)
(5)
(10)
(15)
/12
42 57 16
2/15
(2)
(2)
- 5/24
-229 5′ 27
4.
12 36
5.
(2)
1/5
(3)
(3)
4/3
(3)
300
20
cm
3
7/25
(4)
(4)
53/18
420
6.
5:4
3
2
1
,cos ec
,sec 2, tan 3,cot
2
3
3
5
4
5
3
4
cos ec ,cos ,sec , tan ,cot
3
5
4
4
3
4
5
3
5
3
sin ,cos ec ,cos ,sec ,cot
5
4
5
3
4
12
13
5
12
5
sin ,cos ec ,cos , tan ,cot
13
12
13
5
12
1
1
3
(6)
0
(7)
(8)
2
2
3
2
½
(11)
-½
(12)
½
(13)
3
1
1
1
(16)
(17)
(18)
2
2
2
sin
12
(9)
-1
(14)
-1
-½
Section –III
TRIGONOMETRIC RATIOS OF COMPOUND ANGLES
When we learn a new function, we come to know about various peculiar properties of these functions.
Trigonometric functions in general do not satisfy the relations
sin A B sin A sin B
tan A B tan A tan B
The actual and mathematically correct expansion of sin A B, tan A B initially look very
astonishing but later we realize that almost entire trigonometry run around them, one single
formula
sin A B sin A cos B cos Asin B
(*)
is capable of generating almost all formulas of trigonometry. If we assume the validity of (*)
(Proof later) then
sin A B sin A cos B cos Asin B sin A cos B cos Asin B
cos A B sin A B sin A cos B cos A sin B
2
2
2
cos A cos B sin Asin B
cos A B cos A cos B sin Asin B cos A cos B sin Asin B
sin A cos B cos A sin B
sin A sin B cos A sin B
tan A tan B
sin A B
cos A cos B cos A sin B
tan A B
cos A cos B sin A sin B 1 tan A tan B
cos A B cos A cos B sin A sin B
cos A cos B cos A cos B
tan A B
tan A tan B
1 tan A tan B
cot A B
cot A B
cot A cot B 1
1
1 tan A tan B
cot B cot A
tan A B tan A tan B
cot A cot B 1 cot A cot B 1
cot B cot A
cot B cot A
In the next two chapters we will observe that by adding, subtracting two A B formulas of same kind
we can express sums as products and products as sums. We will further observe that main
trigonometric formulas sin 2 A, cos 2 A, sin 3 A are also derived from these A B formulas only.
In this chapter we will be discussing questions on following six formulas :-
sin A B sin A cos B cos Asin B
13
sin A B sin A cos B cos A sin B
cos A B cos A cos B sin Asin B
cos A B cos A cos B sin Asin B
tan A B
tan A tan B
tan A tan B
, tan A B
1 tan A tan B
1 tan A tan B
In addition to these there are two ‘surprise formulas’
sin A B . sin A B sin 2 A sin 2 B and cos A B . cos A B cos 2 A sin 2 B which
are easily proved by expanding and multiplying. We call them surprise formulas because the
pattern is false for other trigonometric functions. For example
tan A B . tan A B tan 2 A tan 2 B .
We will now give formal proof of these formulas
To prove the formulae
sin A B sin A cos B cos A sin B,
cos A B cos A cos B sin A sin B , see figure
Let XOX ' A, and X ' OX '' B; then XOX '' A B.
On OX '' , the final position of initial line of the compound angle A B , take any point P , and draw
PQ and PR perpendicular to OX and OX ' respectively; also draw RS and
RT perpendicular to OX and PQ respectively.
Now,
Since
PQ RS PT RS PT
OP
OP
OP OP
RS OR PT PR
.
.
sin A.cos B cos A.sin B
OR OP PR OP
TPR 90 TRP TRO ROS A;
sin A B
Thus sin A B sin A cos B cos A sin B
14
Also
cos A B
OQ OS TR OS TR
OP
OP
OP OP
OS OR TR PR
.
.
OR OP PR OP
cos A.cos B sin A.sin B
Thus cos A B cos A cos B sin A sin B
Finally tan A B
But
RS PT
RS PT
OS
OS
OS
OS
TR
TR TP
1
1
.
OS
TP OS
PQ RS PT
OQ OS TR
RS
TR
tan A, and
tan A;
OS
TP
TP PR
tan B
OS OR
tan A tan B
Thus tan A B
1 tan A tan B
also the triangles ROS and TPR are similar
We can similarly derive tan A B
tan A tan B
1 tan A tan B
To prove the formulas
sin A B sin A cos B cos A sin B
cos A B cos A cos B sin A sin B
Let XOX ' A, and X ' OX '' B; then XOX '' A B.
On OX ' take any point P , and draw PQ and PR perpendicular to OL and OM respectively.
Draw RS and RT perpendicular to OL and QP respectively.
Now,
PQ RS PT RS PT
OP
OP
OP OP
RS OR PT PR
.
.
OR OP PR OP
sin A B
15
sin A.cos B cos A.sin B
Since
TPR 90 TRP X '' RT X ' OX A;
sin A B sin A cos B cos A sin B.
Also
OQ OS RT OS RT
OP
OP
OP OP
OS OR RT RP
.
.
OR OP RP OP
cos A B
cos A.cos B sin A.sin B
SOLVED EXAMPLES
1.
cos sin sin = sin( )
4
4
4
4
Show that cos
Sol : If we examine carefully LHS cos A cos B sin A sin B where A
4
, B
LHS cos( A B) cos cos sin
4
4
2
2.
cos 2 33 cos 2 75
2
2 69
2 21
sin
sin
2
2
Show that
Sol : cos 2 33 cos 2 57 1 sin 2 33 1 sin 2 57
sin 2 57 sin 2 33
sin 57 33sin 57 33 sin 90 sin 24 sin 24
69
21
69 21
69 21
sin sin 2 = sin . sin sin 45 sin 24
2
2
2
2
2
2
2
LHS
3.
Show that
RHS
=
sin 24
sin 45 sin 24
2
cos65 sin 65
cot 70
cos65 sin 65
1 tan 65
1 tan 65
tan 45 tan 65
1 tan 45 tan 65
( on dividing by cos 65 )
= tan 45 65
16
tan( 20) = tan 20 cot 70
4
4.
Show that in a triangle whose angles are A, B, C
tan A tan B tan C tan A.tan B.tan C
Sol :
A B 180 C
tan( A B) tan(180 C )
tan A tan B
tan C
1 tan A tan B
1
tan A tan B tan C tan A tan B tan C
tan A tan B tan C tan A tan B tan C
NOTE: In general , If ' tan' of both sides is taken we get a result of the type
Sum of tangents = Product of tangents
For example tan 10 tan 7
5.
tan 10
tan 7 tan
1 tan 7 tan
tan 10 tan 7 tan tan 10 tan 7 tan
If and are the solutions of the equation a tan b sec c, then show that
tan
Sol :
2ac
a c2
2
a tan b sec c
c a tan 2 b 2 sec 2
On arranging
c a tan b sec
(*)
c 2 a 2 tan 2 2ac tan b 2 (1 tan 2 )
tan 2 (a 2 b 2 ) 2ac tan (c 2 b 2 ) 0
(**)
Since and are the solutions of (*) . Therefore , tan and tan are roots of
equation (**).
tan tan
2ac
c2 b2
and
tan
tan
a 2 b2
a 2 b2
2ac
2ac
tan tan
(a b 2 )
=
= 2
tan( )
2
2
c b
a c2
1 tan tan
1 2
a b2
2
EXERCISE
17
1.
2.
3.
24
3
3
3
, cos where
and 2 .
25
5
2
2
3
4
Show that (i) sin
(ii) cos
5
5
3
12
3
16
sin ,0 ,cos ,
show that tan
5
2
13
2
63
If cos
Prove the following identities:
(1)
cos A B cos B sin A B sin B cos A
(2)
sin 3A cos A – cos 3A sin A = sin 2A
(3)
cos(30 + A) cos(30 - A) – sin(30 + A)sin(30 - A) = ½
(4)
sin(60 - A) cos(30 + A) + cos(60 - A)sin(30 + A) = 1
(5)
sin 2 cos + cos 2 sin = sin 4 cos - cos 4 sin
(6)
cos 2 cos + sin 2 sin = cos
(7)
cos 4 cos + sin 4 sin = cos 2 cos - sin 2 sin
(8)
cos 4 cos - sin 4 sin = cos 3 cos 2 - sin 3 sin 2
(9)
tan tan
1 tan tan
tan
(10)
tan 4 A tan 3 A
tan A
1 tan 4 A tan 3 A
(12)
sin(150 + x) + sin(150 - x) = cos x
(15)
cos2 2x – cos2 6x = sin 4x sin 8x
(11)
cot( ) cot 1
cot
cot cot( )
(13)
3
3
cos
x cos
x 2 sin x
4
4
(14)
cos x cos x 2 sin x
4
4
(16)
tan 3x tan 2x tan x = tan 3x – tan 2x – tan x
(17)
sin(60 + A) – sin(60 – A) = sin A
(18)
cos 30 A cos 30 A 3 cos A (19)
cos cos 2 sin
4
4
(20)
sin2 5A – sin2 2A = sin 7A sin 3A
cos 2A cos 5A = cos2
(22)
(23)
sin
sin sin
sin B C
cos B cos C
sin
sin sin
(21)
sin
sin sin
sin C A
cos C cos A
0
sin A B
cos A cos B
18
0
7A
3A
sin 2
2
2
(24)
tan( - ) + tan( - ) + tan( - ) = tan( - )tan( - )tan( - )
(25)
cos2 + cos2 - 2cos cos cos( + ) = sin2 ( + )
(26)
sin2 + sin2 + 2sin sin cos( + ) = sin2( + )
(27)
cos ec
(29)
cos x cos y sin x sin y sin( x y)
4
4
4
4
(30)
tan x
2
4
1 tan x
1 tan x
tan x
4
(31)
sin(n 1) x sin(n 2) x cos(n 1) x cos(n 2) x cos x
(32)
3
3
cos
x cos
x 2 sin x
4
4
(33)
sin 2 6 x sin 2 4 x sin 2 x sin10 x (34)
(35)
cot x cot 2 x cot 2 x cot 3x cot 3x cot x 1
(36)
cos2 cos2 sin 2 ( ) sin 2 ( ) cos2( )
cos ec cos ec
cot cot
(28)
cos
1 tan tan
sec sec
cos2 2 x cos2 6 x sin 4 x sin8 x
4.
If 2 tan cot tan , prove that cot 2 tan( )
5.
If tan
6.
If A B
7.
If A + B = 225, prove that
8.
Prove that :
9.
If sin( ) 1 and sin( )
n sin cos
, show that tan( ) (1 n) tan
1 n sin 2
4
, prove that : (i)
(1 tan A)(1 tan B) 2 (ii) (cot A 1)(cot B 1) 2
cot A
cot B
1
1 cot A 1 cot B 2
tan 2 2 x tan 2 x
tan 3x tan x
1 tan 2 2 x tan 2 x
1
, where 0 , , then find the values of
2
2
tan( 2 ) and tan( 2 ) .
19
10.
Prove that
1
cot( x a) cot( x b)
sin( x a) sin( x b)
sin( a b)
11.
If tan
m
1
, tan
, show that + = /4.
m 1
2m 1
Section –IV Expressing product as sum and sum as products
Product as sum : In the last section we have learnt four important addition and subtraction formulas. If
we add or subtract two such formulas of same kind we get formulas expressing product as a sum and
sum as a product. Indeed by adding sin A B and sin A B formulas we easily get
sin A B sin A B 2 sin Acos B . If we write it in the reverse order we get a formula expressing
the product of the type 2 sin cos as a sum of two sines.
For example, 2 sin 65 cos 25 sin 65 25 sin 65 25 sin 90 sin 30 1 1/ 2 3 / 2 .
Similarly, we can have formulas 2 cos Asin B sin A B sin A B
2 cos Acos B cos A B cos A B
2 sin Asin B cos A B cos A B
One has to be careful in applying last formula in which comes at first place
Sum as product : - If in all above four formulas we put A B C , A B D then by writing in the
CD
CD
cos
reverse direction we easily get sin C sin D 2 sin
2
2
CD
CD
sin C sin D 2 cos
sin
2
2
CD
CD
cos C cos D 2 cos
cos
2
2
CD
CD
cos C cos D 2 sin
sin
2
2
Once again we have to be careful in applying formula number 4. The intricacies of these formulas will be
more clear when we do sufficient number of problems. For instance the formula
2 cos Asin B sin A B sin A B may be avoided if we write
2 cos Asin B 2 sin B cos A sin B A sin B A sin A B sin A B
A will never appear in cos C cos D because of cos cos . Let us illustrate usage of these
formulas by means of examples.
SOLVED EXAMPLES
1.
1
Show that sin140 cos 40 cos10
2
Sol :
sin 140 cos 40
1
2 sin 140 cos 40
2
1
sin( 140 40) sin( 140 40)
2
20
1
sin 180 sin 100 1 sin100 1 cos10
2
2
2
1
Show that sin 10 sin 50 sin 70
8
1
1
LHS sin 102 sin 50 sin 70 sin 10cos (50 70) cos(50 70)
2
2
( on applying 2 sin A sin B cos( A B) cos( A B)]
1
= sin 10 cos( 20 ) cos120
2
1
1
1
sin 10cos 20
( cos( 20) cos 20 and cos 120 )
2
2
2
1
1
1
1
sin 10 cos 20 sin 10
2 sin 10 cos 20 sin 10
2
4
4
4
1
1
sin (10 20) sin( 10 20) sin 10
4
4
1
1
sin 30 sin 10 sin 10 1 sin 30 1 sin 10 1 sin 10 1
=
4
4
4
4
4
8
2.
Sol :
3.
1
Show that sin A sin(60 A)sin(60 A) sin 3 A
4
Sol :
LHS
4.
1
1
1
1
sin A cos 2 A sin A cos 2 A sin 3 A
2
2
2
4
1
1
1
sin 3 A sin A sin A sin 3 A
4
4
4
Show that sin( B C ) cos( A D) sin( C A) cos( B D) sin( A B) cos(C D) 0
1
sin A 2 sin( 60 A) sin( 60 A)
2
1
sin A cos( 2 A) cos120
2
1
[ sin( B C A D) sin( B C A D) sin( C A B D) sin( C A B D)
2
sin( A B C D) sin( A B C D)]
= 0 ( sin( B C A D) gets cut with sin( C A B D) etc )
Show that cos 4 cos10 2 cos 7 cos 3
CD
CD
cos
By applying cos C cos D 2 cos
2
2
4 10
4 10
cos 4 cos10 2 cos
cos
2 cos 7 cos 3
2
2
Show that cos18 sin 18 2 cos 63
LHS cos18 sin 18 sin 72 sin 18
72 18
72 18
2 cos
sin
2 cos 45 sin 27 2 cos 63
2
2
LHS
5.
Sol:
6.
Sol:
21
7.
Sol:
8.
Sol:
sin 5 x sin 3 x
tan 4 x
cos 5 x cos 3x
5 x 3x
5 x 3x
2 sin
cos
2 sin 4 x cos x
2
2
tan 4 x
=
LHS
5 x 3x
5 x 3x
2 cos 4 x cos x
2 cos
cos
2
2
Show that
Show that sin x sin 3x sin 5x sin 7 x 4 cos x cos 2 x cos 4 x
We will use sin C sin D formula twice on correct pairs. The correct pairs are
sin x , sin 7 x ; sin 3 x and sin 5x
LHS sin x sin 7 x sin 3x sin 5 x
2 sin 4 x cos 3x 2 sin 4 x cos x
2sin 4 x cos3x cos x 2 sin 4 x.2 cos 2 x cos x = 4 cos x cos 2x sin 4x
9.
Show that
Sol:
LHS
sin 8 A cos 5 A cos12 A sin 9 A
cot 4 A
cos 8 A cos 5 A cos12 A cos 9 A
sin 13 A sin 3 A sin 21A sin 3 A
2sin8 A cos5 A 2cos12 A sin 9 A
=
2cos8 A cos5 A (2cos12 A cos9 A)
cos13 A cos 3 A (cos 21A cos 3 A)
sin 13 A sin 21A
2 sin 17 A cos 4 A
CD
CD
cos
( Applying sin C sin D 2 sin
cos13 A cos 21A 2 sin 17 A sin 4 A
2
2
CD
CD
sin
and cos C cos D 2 sin
) cot 4 A
2
2
tan( A B) k 1
If sin 2 A k sin 2 B prove that
.
tan( A B) k 1
sin 2 A k
sin 2 A sin 2 B k 1
We
(applying componendo & divenendo )
sin 2 B 1
sin 2 A sin 2 B k 1
10.
Sol:
2 A 2B
2 A 2B
cos
sin( A B) cos( A B) k 1
2
2
=
2 A 2B
2 A 2B
cos( A B) sin( A B) k 1
2 cos
sin
2
2
2 sin
tan( A B) k 1
.
tan( A B) k 1
EXERCISE
5
1
sin
12
12 2
1.
Show 2 sin
2.
Show that sin 25 cos115
1
(sin 40 1)
2
22
1
8
3.
Show that cos 40 cos 80 cos160
4.
Show that cos
5.
4 cos12 cos 48 cos 72 cos 36
6
cos 3A sin 2A – cos 4A sin A = cos 2A sin A
7.
Prove the following identities:
5
1
cos
12
12 4
(1)
sin 2x + 2 sin 4x + sin 6x = 4 cos2 x sin 4x
(2)
sin + sin 3 + sin 5 + sin 7 = 4cos cos 2 sin 4
(3)
cos 7x + cos 5x + cos 3x + cos x = 4 cos x cos 2x cos 4x
(4)
cot 4x(sin 5x + sin 3x) = cot x(sin 5x – sin 3x)
(5)
cos9 x cos5 x
sin 2 x
sin17 x sin 3x
cos10 x
(6)
sin 5 x sin 3x
tan 4 x
cos5 x cos3x
(7)
sin x sin y
x y
tan
cos x cos y
2
(8)
sin x sin 3x
tan 2 x
cos x cos3x
(9)
sin x sin y
x y
tan
cos x cos y
2
(10)
tan 5 tan 3
4cos 2 cos 4
tan 5 tan 3
(11)
sin x sin 3x
2sin x
sin 2 x cos 2 x
(12)
sin 5x 2sin 3x sin x
tan x
cos5 x cos x
(13)
(sin 7 x sin 5 x) (sin 9 x sin 3x)
tan 6 x
(cos7 x cos5x) (cos9 x cos3x)
(14)
cos 4 x cos3x cos 2 x
cot 3x
sin 4 x sin 3x sin 2 x
(15)
sin 3x + sin 2x – sin x = 4 sin x cos
(16)
cos cos3
tan 2
sin 3 sin
(17)
sin 2 sin 3
cot
cos 2 cos3
2
(18)
cos 4 cos
5
tan
sin sin 4
2
(19)
cos 2 cos12
tan 5
sin12 sin 2
(20)
(22)
cos 2 3 cos3
sin 2 3 sin 3
sin sin 4
cos cos 4
x
cos
2
cot
tan
(21)
3
2
23
cos 3 cos 3
sin 3 sin 3
tan 2
8.
(23)
cos 3A + sin 2A – sin 4A = cos 3A(1 – 2sin A)
(24)
sin 3 - sin - sin 5 = sin 3(1 – 2cos 2)
(25)
cos + cos 2 + cos 5 = cos 2(1 + 2cos 3)
(26)
sin - sin 2 + sin 3 = 4sin /2 cos cos 3/2
(27)
sin 3 + sin 7 + sin 10 = 4sin 5 cos 7/2 cos 3/2
(28)
sin A + 2sin 3A + sin 5A = 4sin 3A cos2 A
(29)
sin 2 sin 5 sin
tan 2
cos 2 cos5 cos
(31)
cos7 cos3 cos5 cos
cot 2
sin 7 sin 3 sin 5 sin
(32)
sin( + + ) + sin( - - ) + sin( + - ) + sin( - + ) = 4sin cos cos
(33)
cos( + - ) – cos( + - ) + cos( + - ) – cos( + + ) = 4sin cos sin
(34)
sin 2 + sin 2 + sin 2 - sin 2( + + ) = 4sin ( + )sin( + )sin( + )
(35)
cos + cos + cos + cos( + + ) = 4cos
(36)
cos( + )sin( - ) + cos( + )sin( - ) + cos( + )sin( - ) + cos( + )sin( - ) = 0
(37)
sin cos( + ) – sin cos( + ) = cos sin( - )
(38)
cos cos( + ) – cos cos( + ) = sin sin( - )
(39)
sin( - ) + sin( - ) + sin( - ) + 4sin
(40)
sin (sin 3 + sin 5 + sin 7 + sin 9) = sin 6 sin 4
(41)
sin sin 3 sin 5 sin 7
tan 4
cos cos3 cos5 cos7
(42)
sin x sin3x sin5x sin 7 x 4cos x cos 2 x sin 4 x
(43)
2 cos
(44)
tan 60 tan 60
(45)
cos 20 cos100 cos100 cos140 cos140 cos 200
(46)
sin
2
13
cos
.sin
(30)
sin sin 2 sin 4 sin 5
tan 3
cos cos 2 cos 4 cos5
2
2
sin
cos
2
2
sin
cos
2
2
0
9
3
5
cos
cos
0
13
13
13
2 cos 2 1
2 cos 2 1
3
4
7
3
11
sin
sin
sin 2 sin 5
2
2
2
If cos( A B).sin C D cos( A B) sin( C D) prove that tan A tan B tan C tan D 0
24
9.
Show that sin x sin y sin(x – y) + sin y sin z sin(y – z) + sin z sin x sin(z – x) + sin(x – y) sin(y – z)
sin(z – x) = 0 for all x, y, z.
Section –V Trigonometric Functions of multiple angles
Almost all trigonometric formula have been generated by sin( A B ) formula
Now we will observe that most useful formulas being generated by these formula’s.
The formulas express Trigonometric functions of the angle n A in terms of Trigonometric
Functions of angles A where n is an integer ( in general n can be positive rational ) we start deriving
these formula’s.We will put frequently used formulas in a block.
sin 2 A sin( A B) sin A cos A cos A sin A 2 sin Acos A
Thus sin 2 A 2 sin A cos A
We can similarly derive,
sin 4 A 2 sin 2 A cos 2 A, sin 8 A 2 sin 4 A cos 4 A, sin A 2 sin
A
A
cos
2
2
A
A
A
2 sin n1 cos n1
n
2
2
2
Again cos 2 A cos ( A A) cos A cos A sin A sin A cos 2 A sin 2 A
sin
But cos 2 A sin 2 A cos 2 A (1 cos 2 A) 2 cos 2 A 1
1 2 sin 2 A
Thus cos 2 A cos 2 A sin 2 A 2 cos 2 A 1 1 2 sin 2 A
We can similarly derive cos 4 A cos 2 2 A sin 2 2 A 2 cos 2 2 A 1 1 2 sin 2 2 A
A
A
A
A
cos A cos 2 sin 2 2 cos 2 1 1 2 sin 2
2
2
2
2
tan A tan A
2 tan A
Again tan 2 A tan( A A)
.
1 tan A tan A 1 tan 2 A
A
2 tan
2 tan A
2 tan 2 A
2
Thus tan 2 A
Also tan 4 A
or tan A
2
1 tan A
1 tan 2 2 A
2 A
1 tan
2
2
2 tan A
1 tan A
we can easily get sin 2 A
, cos 2 A
2
1 tan A
1 tan 2 A
Or cos 2 A sin 2 A (1 sin 2 A) sin 2 A
3A formulas :-
sin 3 A sin(2 A A)
sin A cos 2 A cos A sin 2 A = sin A (1 2 sin 2 A) cos A.2 sin A cos A
= sin A (1 2 sin 2 A) 2 sin A(1 sin 2 A) = 3sin A 4 sin 3 A
cos3 A cos( A 2 A) cos A cos 2 A sin Asin 2 A
=
cos A (2 cos 2 A 1) 2 sin 2 A cos A = cos A(2 cos 2 A 1) 2 (1 cos 2 A) cos A
= 4cos3 A 3cos A
tan 3 A tan( A 2 A)
tan A tan 2 A
1 tan A tan 2 A
25
2 tan A
3
1 tan 2 A = 3tan A tan A
=
2 tan A
1 3tan 2 A
1 tan A.
1 tan 2 A
sin 3 A 3sin A 4 sin 3 A
tan A
Thus
cos 3 A 4 cos 3 A 3 cos A
tan 3 A
3 tan A tan 3 A
1 3 tan 2 A
(i)
(ii)
The sine, cosine, tangents of angle of n A when n 4 can also be found.
We will observe that if n is a positive integer.
cos nA will be a polynomial of degree n in cos A for all n .
sin nA will be a polynomial of degree n in sin A if n is odd .
(iii)
tan nA
n
C1 tan A n C3 tan 3 A n C5 tan 5 A.....
1 n C2 tan 2 A n C4 tan 4 A.....
The proof of (i), (ii), (iii) involve three branches of algebra which are complex numbers, binomial
theorem and polynomial theory. We will limit our solves upto n 5 . The general proof is beyond the
scope of this book.
2
For example : cos 4 A 2 cos 2 2 A 1 2 2 cos 2 A 1 1 8 cos 4 A 8 cos 2 A 1
or cos 4 A Real part of cos 4 A i sin 4 A
4
Real part of cos A i sin A
Real part of
cos A
4
4
C1 cos A i sin A 4C2 cos A i sin A 4C3 cos A i sin A 4C4 i sin A
3
2
cos 4 A 6 cos 2 A sin 2 A sin 4 A
2
1
3
2
cos 4 A 6 cos 2 A 1 cos 2 A 1 cos 2 A
8 cos 4 A 8 cos 2 A 1
5
sin 5 A Imaginary part of cos 5 A i sin 5 A I.P of cos A i sin A
This time writing only Imaginary part we get
i sin 5 A 5C1 cos A i sin A 5C3 cos A i sin A 5C5 i sin A
4
1
2
3
5
sin 5 A 5 sin Acos A 10 sin 3 A cos 2 A sin A
4
5
2
5sin A 1 sin 2 A 10sin3 A 1 sin2 A sin5 A
16 sin 5 A 20 sin 3 A 5 sin A
(*)
The above discussion may lead to something very basic in mathematics that sin x , or
cos x are solutions of polynomial equations with integer coefficients.
For example If A 18 then 5A 90 from (*)
1 16 x 5 20 x 3 5 x
where x sin A
5
3
or 16 x 20 x 5 x 1 0
sin 18 is a solution of a polynomial equation with integer coefficients. Actually numbers
which are solutions of polynomial equations with integer coefficients are called algebraic
numbers. The number is not algebraic but cos 20 is algebraic since
26
4
cos 60 4 cos3 20 3 cos 20 (by formula cos 3 A 4 cos3 A 3 cos A )
1 / 2 4 x 3 3x
where x cos 20
3
8x 6 x 1 0
cos 20 is algebraic
We will later see that sin 18 is a solution of a polynomial equation with much lesser degree.
SQUARE, CUBE FROM POWER REMOVAL : From 2 A formula’s we can get rid of power 2,3,4
easily. For example :
1 cos 2 A
1 cos 2 A
, sin 2 A
2
2
cos 3 A 3 cos A
3 sin A sin 3 A
cos3 A
, sin 3 A
4
4
cos 2 A
1 2 cos 2 A cos 2 2 A
4
1 cos 4 A
1 2 cos 2 A
3 1
1
2
cos 2 A cos 4 A
8 2
8
4
2
1 cos 2 A
cos 4 A cos 2 A
2
2
(**)
3 1
1
Similarly sin 4 A cos 2 A cos 4 A etc. From these fourth power formula we easily get
8 2
8
cos 4
8
cos 4
3
5
7 3
cos 4
cos 4
by using (**) several times.
8
8
8
2
SOLVED EXAMPLES
Example 1 :
Prove that cot - cot 2 = cosec 2
Solution :
cot cot 2
cos cos 2 sin 2 cos cos 2 sin
sin sin 2
sin sin 2
sin 2
sin
cos ec 2 RHS
sin sin 2 sin sin 2
Example 2 :
Prove that 1 + cot 2 cot = cosec 2 cot
Solution :
1 cot 2 cot 1
cos 2 cos
sin 2 sin
sin 2 sin cos 2 cos cos2 cos
1
.
sin 2 sin
sin 2 sin sin sin 2
cot cos ec2 RHS
27
Example 3 :
tan + cot = 2cosec 2
Solution :
LHS tan cot
2
2 sin cos
sin cos sin 2 cos 2
1
cos sin
sin cos
sin cos
2
2 cos ec 2
sin 2
2
Example 4 :
A
A
sin cos 1 sin A
2
2
Solution :
LHS sin 2
Example 5 :
Prove that
Solution :
LHS
A
A
A
A
cos 2 2 sin cos 1 sin A
2
2
2
2
cos 2
tan 45
1 sin 2
cos 2
cos 2 sin 2 cos sin cos sin
2
1 sin 2 cos sin 2
cos sin
cos sin 1 tan
tan 45 tan
tan 45
cos sin 1 tan 1 tan 45 tan
OR
sin 2
2 sin cos
cos 2
2
4
4
tan
4
1 sin 2
2
1 cos 2
2 cos
2
4
(Applying sin A 2 sin
1 cos A 2 cos 2
A
A
cos where role of A is being played by 2 and
2
2
2
A
with A as 2 )
2
2
Example 6 :
Prove that cos cos sin sin 4cos2
Solution :
On squaring
2
LHS
2
2
cos 2 cos 2 2 cos cos sin 2 sin 2 2 sin sin
2 2cos cos sin sin
2 2 cos 21 cos
2.2 cos 2
4 cos 2
2
2
(Applying 1 cos A 2 cos 2
RHS
28
A
with A as )
2
Example 7 :
Prove that cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1
Solution :
cos 6x 2 cos 2 3x 1
( cos 2 A 2 cos 2 A 1 with A as 3x )
2
2 4cos3 x 3cos x 1 32cos6 x 48cos4 x 18cos2 x 1
Example 8 :
A
Prove that sin A 1 2sin 2 45
2
Solution :
A
RHS 1 2 sin 2 45 1 2 sin 2
2
A
45
2
cos 2 cos90 A sin A
Example 9 :
Prove that cos2 sin 2 sin 2
4
4
Solution :
On removing squares
1 cos 2
4
cos 2
4
2
1 cos 2
2
1 sin 2
2
2
1 cos 2
2
1 sin 2
sin 2
2
2
4
On subtracting we get the desired result
Example 10 :
Prove that
Solution :
LHS
1 sin 2 cos 2
tan
1 sin 2 cos 2
1 cos 2 sin 2 2sin 2 2sin cos
1 cos 2 sin 2 2cos 2 2sin cos
2 sin sin cos
tan RHS
2 cos cos sin
Example 11 :
Prove that sin 2 x 2sin 4 x sin 6 x 4cos 2 x sin 4 x
Solution :
LHS
sin 2 x sin 6 x 2sin 4 x
2 sin 4x cos 2x 2 sin 4x
2 sin 4 x1 cos 2 x 2 sin 4 x.2 cos 2 x
4 cos 2 x sin 4 x RHS
29
Example 12 :
Prove that 2 cos
Solution :
1 cos 4 2 cos 2 2
2 2 2 cos 4
2 2 cos 4 4 cos 2 2
On taking square root 2 2 cos 4 2 cos 2
On adding 2 on both sides we get
2 2 2 cos 4 2 2 cos 2 21 cos 2 2.2 cos 2
On taking the square root again we get
2 2 2 cos 4 2 cos as desired
Example 13 :
Prove that tan A + 2 tan 2A + 4 tan 4A + 8 cot 8A = cot A
Solution :
LHS
tan A 2 tan 2 A 4 tan 4 A 8cot 8 A
cot A tan A 2 tan 2 A 4 tan 4 A 8cot 8 A cot A
(Subtracting and adding cot A )
Now
cot A tan A
cos A sin A sin 2 A cos 2 A
sin A cos A
sin A cos A
cos 2 A
.2 2 cot 2 A
2 sin A cos A
(*)
LHS 2cot 2 A 2 tan 2 A 4 tan 4 A 8cot 8 A cot A
4cot 4 A 4 tan 4 A 8cot 8 A cot A (using (*) for A replaced by 2 A )
8cot 8 A 8cot 8 A cot A
(Again using (*))
cot A RHS
Example 14 :
Prove that
Solution :
sec 8 A 1
sec 4 A 1
sec8 A 1 tan 8 A
sec 4 A 1 tan 2 A
1
1
1 cos 8 A cos 4 A
cos 8 A
.
1
cos
8
A
1 cos 4 A
1
cos 4 A
2 sin 2 4 A cos 4 A 2 sin 4 A cos 4 A sin 4 A
,
.
2 sin 2 2 A cos 8 A
cos 8 A
2 sin 2 2 A
tan 8 A .
2 sin 2 A cos 2 A tan 8 A
2 sin 2 2 A
tan 2 A
30
A
if tan A 3 / 4
2
Example 15 :
Find the values of tan
Solution :
A
2 2 x where x tan A
tan A
A 1 x2
2
1 tan 2
2
2 tan
Now tan A 3 / 4 A is either in first quadrant (or 2n to 2n
quadrant
(i.e. from 2n to 2n
If A is from 2n to 2n
2
then
If A is from 2n to 2n
tan
2.
2
) OR in the third
3
)
2
A
A 1
A
tan 0 tan
is from n to n
4
2
2 3
2
3
A
3
then is from n to n
2
2
4
2
A
A
0 tan 3
2
2
EXERCISE
1.
x
x
x
Find sin ,cos and tan in each of the following :
2
2
2
4
1
(1).
(2).
tan x , x in quadrant II
cos x , in quadrant III
3
3
1
(3).
tan x , in quadrant II
4
Prove the following identities:
(1)
cosec 2 - cot 2 = tan
(2)
1 + tan 2 tan = sec 2
(3)
2 cosec 2 = sec cosec
(4)
cos4 - sin4 = cos 2
(5)
cot - tan = 2cot 2
(6)
cot 2 A
(7)
cot A tan A
cos 2 A
cot A tan A
(8)
1 cot 2 A
cos ec 2 A
2cot A
(9)
cot 2 A 1
sec 2 A
cot 2 A 1
(10)
1 sec
2cos2
sec
2
(11)
2 sec2
cos 2
sec2
(12)
cos ec 2 2
cos 2
cos ec 2
31
cot 2 A 1
2cot A
cos 2
cot 45
1 sin 2
2
(13)
A
A
sin cos 1 sin A
2
2
(15)
sin 8A = 8sin A cos A cos 2A cos 4A
(17)
cos 2 sin 2
cos3
sec cosec
2
(14)
2
(16)
1 + cos 4A = 2cos 2A(1 – 2sin2 A)
tan 4
(18)
cos 4x = 1 – 8 sin x cos x
(20)
(sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0
(21)
cot
(22)
cosec (sec - 1) – cot (1 – cos ) = tan - sin
(23)
tan(45 + A)– tan(45 - A) = 2tan 2A
(24)
tan (45 + A) + tan(45 - A) = 2 sec 2A
(26)
cot 3 A
(28)
sin 3 sin 3
cot
cos3 cos3
(30)
cos 5A cos 2A – cos 4A cos 3A = -sin 2A sin A
(31)
sin 4 cos - sin 3 cos 2 = sin cos 2
(32)
4sin A sin(60 + A)sin(60 - A) = sin 3A
(33)
2
2
4cos cos
cos
cos3
3
3
(34)
2
2
cos cos
cos
0
3
3
(35)
cos2 A + cos2 (60 + A) + cos2 (60 – A) = 3/2
(36)
sin2 A + sin2(120 + A) + sin2(120 - A) = 3/2
(37)
(38)
(39)
(19)
4 tan 1 tan 2
1 6 tan tan
2
4
sin
cos ec
1 cos
cot 3 A 3cot A
3cot 2 A 1
sin sin sin
sin sin sin
cot
2
cot
(25)
sin 3 A cos3 A
2
sin A cos A
(27)
3cos cos3
cot 3
3sin sin 3
(29)
cos3 cos3 sin 3 sin 3
3
cos
sin
2
(cos A – sin A)(cos 2A – sin 2A) = cos A – sin 3A
sin 2 A cos 2 A
1 tan A2 2 tan 2 A
1 tan A
2
(40)
sin 4 A
4 tan A 1 tan 2 A
1 tan A
2
32
2
4cos 2 A
1 2sin 2 A
(41)
cot 15 A tan 15 A
(42)
cot 15 A tan 15 A
(43)
tan A 30 tan A 30
(44)
(2cos A + 1)(2cos A – 1)(2cos 2A – 1) = 2cos 4A + 1
(45)
cos2( - ) + cos2( - ) + cos2( - ) = 1 + 2cos ( - )cos( - )cos( - )
(46)
2cos2 (45 - A) = 1 + sin 2A
(47)
2cos 2x cosec 3x = cosec x – cosec 3x
(49)
2tan 2x =
(50)
(cos x + cos y)2 + (sin x – sin y)2 = 4cos2
x y
2
(51)
(cos x – cos y)2 + (sin x – sin y)2 = 4sin 2
x y
2
(52)
1 sin 2 x
tan 2 x
1 sin 2 x
4
(54)
(sin3x sin x)sin x (cos3x cos x)cos x 0
(55)
1
1
sin A 2sin 3 A sin 5 A sin 3 A
cot 2 A. (56)
tan 3 A tan A cot 3 A cot A
sin 3 A 2sin 5 A sin 7 A sin 5 A
(57)
sin 6
(58)
3A
A
A A
4 cos sin sin
cos ec
2
2
6 2 3 2
(59)
cos 5 = 16 cos5 - 20 cos3 + 5 cos
(60)
cos A cos (60 – A) cos(60 + A) = ¼ cos 3A
(61)
cos8 A cos 5 A cos12 A cos 9 A
tan 4 A
sin 8 A cos 5 A cos12 A sin 9 A
(62)
cos3 A cos3 120 A cos3 240 A
4
cos 2 A 3 sin 2 A
1 2cos 2 A
1 2cos 2 A
(48)
cos A cos 2A cos 4A cos 8A =
sin16 A
16sin A
cos x sin x cos x sin x
cos x sin x cos x sin x
(53)
cos3 sin 3
2cot 2
sin
cos
A
A 3
cos 6 sin 2 A 4 cos A.
2
2 4
33
3
cos 3 A
4
(63)
2sin A cos3 A – 2sin3 A cos A =
1
sin 4A
2
(64)
sin 3A cos3 A + cos 3A sin3 A =
3
sin 4A
4
(65)
tan 3
cot 3
1 2sin 2 cos 2
sin cos
1 tan 2 1 cot 2
(66)
2cos cos cos ( + ) = cos2 + cos2 - sin2 ( + ).
sin 2 3 cos 2 3
8cos 2
sin 2
cos 2
(67)
3
1 sin 4 A cot 2 A cos 4 A 0
4
(69)
2cos - cos 3 - cos 5 = 16cos3 sin2
(70
cos3 ( + ) sin3 ( - ) + cos3 ( + ) sin3 ( - ) + cos3 ( + ) sin3 ( - )
(68)
= 3cos ( + ) cos ( + ) cos( + ) sin( - ) sin( - ) sin ( - )
2.
(71)
cos2 A + cos2 B – 2cos A cos B cos(A + B) = sin2 (A + B).
(72)
tan 3 A
cot 3 A
sec A cos ec A sin 2 A
1 tan 2 A 1 cot 2 A
(73)
tan tan 60 tan tan 60 tan 60 tan 60 3
(74)
2sin4 - sin 10 +sin2 = 16sin cos cos 2 sin 2 3 .
Prove the following numerical equalities (based on last three sections)
(1)
cos 80 + cos 40 – cos 20 = 0
(2)
cos 130 cos 40 + sin 130 sin 40 = 0
(3)
cos 5 – sin 25 = sin 35
(4)
cos 70 cos 10 + sin 70 sin 10 = ½
(5)
sin 65 + cos 65 = 2 cos 20
(6)
sin 78 – sin 18 + cos 132 = 0
(7)
cot 15 + cot 75 + cot 135 – cosec 30 = 1
(8)
(9)
sin 10 sin 30 sin 50 sin 70 = 1/16
1
sin 20 sin 40 sin 80 =
3
8
(10)
tan 40 + cot 40 = 2sec 10
2
(11)
tan 70 + tan 20 = 2 cosec 40
(12)
(13)
tan 6 tan 42 tan 66 tan 78 = 1
(14)
cos 33 cos 57
1
(16)
sin 21 cos 21
2
cos 20 2sin 2 55 1 2 sin 65
2
(15)
(17)
2
34
1 cot 60 1 cos30
1 cot 60 1 cos30
cosec 10 - 3 sec10 = 4
1
cos ec10 2sin 70 1
2
3.
(18)
sin 70 8cos 20 cos 40 cos80 2 cos 2 10
(19)
cos 2 73 cos 2 47 cos 73 cos 47
(20)
tan10 tan 70 tan 50 3
(21)
tan 20 + tan 40 +
3
4
3 tan 20tan 40 3
If sin A + sin B + sin C = cos A + cos B + cos C = 0, prove that
sin2 A + sin2 B + sin2 C = cos2 A + cos2 B + cos2 C = 3/2
ANSWERS
1.
(1).
2 5
5
,
,2
5
5
(2).
6
3
,
, 2
3
3
(3).
8 2 15
8 2 15
,
, 4 15
4
4
Section –VI Periodicity, Graphs of Trigonometric functions
All basic trigonometric functions are periodic. The functions sin x, cos x, sec x and cosec x have periods
2n (n is any integer) with fundamental period as 2 since
sin (x + 2n) = sin x
cos(x + 2n) = cos x
sec(x + 2n) = sec x
cosec(x + 2n) = cosec x
The periods of tan x and cot x are n with fundamental period as . Note that
1.
The period of sin 2x is 2/2 = by using the fact that if period of & f(x) is T then period of f(x) is
T/ ( 0).
2
6 .
1
3
2.
Using (1) period of tan 3x is /3 while period of cot x/3 is
3.
Fundamental period of sin
4.
5.
6.
S1 = 6, 12, 18, 24, 30, ………………….
(periods of sin x/3)
and
S2 = 8, 16, 24, 32, ………………… is 24
Fundamental period of sin x, cos(sin x) and sin2 x are
Period of sin x + cos x is /2
Functions of the type sin x2, sin x , sin 1/x are non periodic.
x
x
cos is 24 since least common element in the two series
3
4
Graphs
Since trigonometric functions are periodic we need to trace their graphs only within periods. Let us
observe the graph of sin x we observe that
(1)
sin x increases from 0 to 1 when x increases from 0 to /2.
(2)
sin x decreases from 1 to 0 when x increases from /2 to .
35
(3)
sin x further decreases from 0 to -1 when x increases from to 3/2.
(4)
sin x finally increases from -1 to 0 when x increases from 3/2 to 2.
The same pattern repeats from 2 to 4 and so on.
The following graphs can easily be traced by using the graph of sin x
(a)
sin 3x (or sin x in general)
(b)
2 sin 3x (or sin x)
(c)
2sin 3x + 5
To trace y = sin 3x we will draw the graph of sin x and will divide each of the located point on x-axis by 3.
Again to draw y = 2 sin 3x we will draw the graph of sin x then
(a)
Change (0, 1) and (0, -1) to (0, 2), (0, -2)
(b)
divide each point marked on x-axis by 3.
Finally to draw y = 2 sin 3x + 5 we will raise the last graph by 5 units (Translation along positive y-axis)
Note that graph of sin (x + ) can also be traced by graph of sin x. We just have to subtract from each
point located on x-axis.
The graph of cos x is easily seen to as shown in the figure. As in the case of sin x the graphs of
associated functions can also be traced.
Graphs of other trigonometric functions
Since tan x, cot x, sec x, cosec x may approach - or their graphs have tangent lines meeting them
(called asymptotes) at infinity. These functions have infinite discontinuities at n (In case of cot x and
cosec x) and at (2n + 1)/2 (In case of tan x and sec x)
Tan x
Cot x
36
Graph of sec x
Graph of cosec x can similarly be traced
Solved Examples
1.
Compare the graphs of y = sin 2x and y
sin x
1 tan 2 x
cos x
1 cot 2 x
.
Solution: The graph of y1 = sin 2x is continuous and smooth through out the interval
[0, 2] (Indeed over the entire number line). On the contrary, the function
y2
sin x
1 tan 2 x
n
not defined at
)
2
Also
cos x
1 cot 2 x
1 tan 2 x sec x
Thus, if x
n
then
2
and
is not defined at x
n
(because tan x, cot x are
2
1 cot 2 x cos ecx
y2 = sin x sec x + cos x cosec x
Observe the following table for the function y2 (Note sin x cos x + sin x cos x = sin 2x)
37
Interval
sec x
cosec x
y2
0,
2
sec x
cosec x
sin 2x
,
2
-sec x
cosec x
0
3
,
2
-sec x
-cosec x
-sin 2x
3
,
2
sec x
-cosec x
0
Exercise
1.
From the graph of y sin x draw the graph of following functions :
(ii)
(iv)
y sin 3x
y 3 sin 5 x
(v)
y 2 sin x
(iii)
y 3 sin 5 x (vi)
(vii)
y cos x
(viii)
y sin 2 x
(i)
2.
Draw the graphs of sin x + cos x [Hint: sin x + cos x =
38
y sin x 2
y 3 sin 5x 3
2 sin x ]
4