Download Trigonometric Integrals

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Trigonometric Integrals
I. Integrating Powers of the Sine and Cosine Functions
A. Useful trigonometric identities
1. sin 2 x  cos 2 x  1
2. sin 2x  2 sin x cos x
3. cos 2 x  cos 2 x  sin 2 x  2 cos 2 x  1  1  2 sin 2 x
1  cos 2 x
2
1  cos 2 x
cos 2 x 
2
1
sin x cos y  [sin( x  y )  sin( x  y )]
2
1
sin x sin y  [cos( x  y )  cos( x  y )]
2
1
cos x cos y  [cos( x  y )  cos( x  y )]
2
4. sin 2 x 
5.
6.
7.
8.
B. Reduction formulas
1.

1
n 1
sin n x dx   sin n1 x cos x 
sin n2 x dx
n
n

2.

cos n x dx 

1
n 1
cos n1 x sin x 
cos n2 x dx
n
n
C. Examples
1. Find
 sin
2
x dx .
 sin x (sin x dx) . Let
u  sin x and dv  sin x dx  du  cos x dx and v  sin x dx 

Method 1(Integration by parts):

1
sin 2 x dx 
 cos x . Thus,
 sin
2

x dx  (sin x)( cos x)  cos 2 x dx   sin x cos x 
 (1  sin x) dx   sin x cos x  1dx   sin x dx   sin x cos x  x 
 sin x dx  2 sin x dx   sin x cos x  x   sin x dx 
2
2
2
2
2
1
1
 sin x cos x  x  C .
2
2
Method 2(Trig identity):

sin 2 x dx 
Method 3(Reduction formula):


1
1
1
(1  cos 2 x) dx  x  sin 2 x  C .
2
2
4

1
1
sin 2 x dx   sin x cos x 
1dx 
2
2
1
1
 sin x cos x  x  C .
2
2
2. Find
 cos x dx .
3
Use the reduction formula:


1
2
cos 3 x dx  cos 2 x sin x 
cos x dx 
3
3
1
2
1
2
cos 2 x sin x  sin x  C  sin x(1  sin 2 x)  sin x  C 
3
3
3
3
1
sin x  sin 3 x  C .
3

3. Find sin 3 x cos 2 x dx .
 sin x cos x dx   sin x sin x cos x dx   (1  cos x) cos x sin xdx 
 (cos x  cos x)(sin x dx) . Let u  cos x  du   sin x dx . Thus,
3
2
2

2
2
2
2
4
1

1
1
(cos 2 x  cos 4 x)(sin x dx)   (u 2  u 4 ) du   u 3  u 5  C 
3
5
1
1
 cos 3 x  cos 5 x  C .
3
5
2
4. Find

 sin x cos x dx .
2
2



1
 1  cos 2 x  1  cos 2 x 
(1  cos 2 2 x) dx 


 dx 
2
2
4



1
1  1  cos 4 x 
1
1
sin 2 2 x dx 
1 dx 
cos 4 x dx 

 dx 
4
4 
2
8
8

1
1
x  sin 4 x  C .
8
32
sin 2 x cos 2 x dx 

5. Find


 sin 4x cos 3x dx .
Method 1(Integration by parts): Let u  sin 4x and dv  cos 3x dx  du =
1
4 cos 4 x dx and v  sin 3x . Thus, sin 4 x cos 3x dx 
3
1
1
 4
(sin 4 x) sin 3x  
cos 4 x sin 3x dx  sin 4 x sin 3x 
3
3
 3
4
cos 4 x sin 3x dx . Find cos 4 x sin 3x dx . Let u  cos 4x and dv =
3
1
sin 3x dx  du  4 sin 4 x dx and v   cos 3 x . Thus,
3
1
4
cos 4 x sin 3x dx   cos 4 x cos 3x 
sin 4 x cos 3x dx . Returning to
3
3
1
the original integral, sin 4 x cos 3x dx = sin 4 x sin 3 x 
3
4 1
4
 1
sin 4 x cos 3x dx   sin 4 x sin 3x 
 cos 4 x cos 3x 
3 3
3
 3
4
16
7
cos 4 x cos 3x 
sin 4 x cos 3x dx  
sin 4 x cos 3x dx 
9
9
9
1
4
sin 4 x sin 3x  cos 4 x cos 3x  sin 4 x cos 3x dx =
3
9
3
4
 sin 4 x sin 3x  cos 4 x cos 3x  C .
7
7






Method 2(Trig identity):






sin 4 x cos 3x dx 
1
1
 cos x  cos 7 x  C .
2
14
3
1
2
 sin x  sin 7x dx 
II. Integrating Powers of the Tangent and Secant Functions
A. Useful trigonometric identity: tan 2 x  1  sec 2 x
B. Useful integrals
1.
 sec x tan x dx  sec x  C
2.
 sec x dx  tan x  C
3.
 tan x dx  ln sec x  C   ln cos x  C
4.
 sec x dx  ln sec x  tan x  C
2
C. Reduction formulas
1.
2.

sec n  2 x tan x n  2
sec x dx 

sec n  2 x dx
n 1
n 1

tan n 1 x
tan x dx 
 tan n  2 x dx
n 1

n

n
D. Examples
1. Find

2
x dx .
tan 2 x dx 
2. Find

 tan

(sec 2 x  1) dx 


sec 2 x dx  1dx  tan x  x  C .
 tan xdx .
3
tan 3 xdx 
tan 2 x

2

tan x dx 
1
tan 2 x  ln sec x  C .
2
4
3. Find

 sec xdx .
3
sec 3 x dx 
4. Find

sec x tan x 1
1
1

sec x dx  sec x tan x  ln sec x  tan x  C .
2
2
2
2
 tan x sec x dx .
2
Let u  tan x  du  sec 2 xdx 

tan x sec 2 x dx 

udu 
1 2
u C 
2
1
tan 2 x  C .
2
5. Find

tan x sec 4 x dx .
 tan x sec x dx   tan x sec x sec x dx   tan x(1  tan x) sec x dx 
 tan x sec x dx   tan x sec dx . Let u  tan x  du  sec x dx . Thus,
1
1
1
1
tan x sec x dx  udu  u du  u  u  C  tan x  tan x  C .

  2 4
2
4
4
2
2
3

2
2
2
2
4
6. Find
2
3
2
4
2
4
tan x sec 3 x dx .
 tan x sec x dx   sec x (sec x tan x dx) . Let u  sec x  du  sec x tan xdx .
1
1
Thus, tan x sec x dx  u du  u  C  sec x  C .

 3
3
3
2
3
7. Find

2
3
3
tan 2 x sec 3 x dx .
 tan x sec x dx   (sec x 1) sec x dx   sec x dx   sec x dx . Using
1
3
the reduction formula, sec x dx  sec tan x 
sec x dx . Thus,

4
4
2
3
2
3
5
5
3
5
3
3





1
3
sec 5 x dx  sec 3 x dx  sec 3 x tan x 
sec 3 xdx 
4
4
1
1
1
1
sec 3 x dx  sec 3 x tan x 
sec 3 x dx  sec 3 x tan x  sec x tan x 
4
4
4
8
tan 2 x sec 3 x dx 

1
ln sec x  tan x  C .
8
8. Find


tan x sec 4 x dx .
tan x sec 4 x dx 

tan x sec 2 x sec 2 x dx 
Let u  tan x  du  sec 2 x dx 

tan x tan 2 x sec 2 x dx 



tan x (1  tan 2 x) sec 2 xdx .
tan x sec 4 x dx 


tan x sec 2 x dx 
5
1
2 3
2 7
u 2 du  u 2 du  u 2  u 2  C 
3
7
3
7
2
2
(tan x) 2  (tan x) 2  C .
3
7
9. Find

sec x tan x dx .
Let u  sec x  u 2  sec x  2udu  sec x tan xdx  u 2 tan xdx 
2udu 2
2 
tan x dx  2  du . Thus,
sec x tan x dx  u du   2 1du 
u
u
u 

2u  C  2 sec x  C .
6


Practice Sheet forTrigonometric Integrals
(1) Prove the reduction formula:

1
n 1
sin n x dx   sin n1 x cos x 
sin n2 x dx
n
n
(2) Prove the reduction formula:

cos n x dx 
(3) Prove the reduction formula:

sec n  2 x tan x n  2
sec x dx 

sec n  2 x dx
n 1
n 1
(4) Prove the reduction formula:

tan n x dx 

(5)


n
4

tan 3 (3 x ) dx =
0

(6)
4

cos 2 (2 x) dx =
0

8

sin( 5 x) cos(3x) dx =
(8)

tan 3 x sec 3 x dx =
(9)

sin x cos 3 x dx =
(7)

1
n 1
cos n1 x sin x 
cos n2 x dx
n
n
0
7
tan n 1 x
 tan n  2 x dx
n 1

(10)


(11)
cos 3 x sin 2 x dx =
2

sin 3 x
cos x
dx =
0
(12)

sin 2 x cos 2 xdx 
(13)

tan 5 x sec xdx 
Solution Key for Trigonometric Integrals
(1)

sin n x dx 

sin n1 x sin x dx . Use integration by parts with u  sin n 1 x and
dv  sin x dx  du  (n  1) sin n2 x cos x dx and v 
 sin x dx   sin
n
n 1
 sin x dx   cos x 

x sin x dx =  sin n1 x cos x  (n  1) sin n2 x cos 2 x dx 



 sin n1 x cos x  (n  1) sin n2 x 1  sin 2 x dx   sin n1 x cos x 



(n  1) sin n2 x dx  (n  1) sin n x dx  n sin n x dx   sin n1 x cos x 



1
n 1
(n  1) sin n2 x dx  sin n x dx   sin n1 x cos x 
sin n2 x dx .
n
n
(2)
 cos x dx   cos
n
n 1
x cos x dx . Use integration by parts with u  cos n 1 x and
8
dv  cos x dx  du  (n  1) cos n2 x ( sin x) dx and v 
 cos x dx  sin x 


cos n x dx 

cos n1 x cos x dx = cos n1 x sin x  (n  1) cos n2 x sin 2 x dx 



cos n1 x sin x  (n  1) cos n2 x 1  cos 2 x dx  cos n1 x sin x 



(n  1) cos n2 x dx  (n  1) cos n x dx  n cos n x dx  cos n1 x sin x 


(n  1) cos n2 x dx  cos n x dx 
(3)


1
n 1
cos n1 x sin x 
cos n2 x dx .
n
n

sec n x dx  sec n2 x sec 2 x dx . Use integration by parts with u  sec n  2 x and
dv  sec 2 x dx  du  (n  2) sec n3 x (sec x tan x dx) and v 
 sec x dx   sec
n
n2

sec 2 x dx  tan x 

x sec 2 x dx = sec n2 x tan x  (n  2) sec n2 x tan 2 x dx 




sec n2 x tan x  (n  2) sec n2 x sec 2 x  1 dx  sec n2 x tan x  (n  2) sec n xdx 



(n  2) sec n2 x dx  (n  1) sec n x dx  sec n2 x tan x  (n  2) sec n2 x dx 

(4)
sec n x dx 
sec n  2 x tan x n  2

sec n  2 x dx .
n 1
n 1

 tan x dx   tan
n

tan n  2 x dx 
n2
x tan 2 x dx 
tan n 1 x

n 1
 tan
n2
 tan
n2
x dx .
9


x sec 2 x  1 dx 
 tan
n2
x sec 2 xdx 
(5)
Let u  3x  du  3 dx 

tan 3 (3x) dx 
reduction formula #4 above to get

1
1
tan 2 u  ln sec u 
6
3
4



1
1
tan 3 (3x) 3dx 
tan 3 u du . Use
3
3
1
1  tan 2 u  1

tan 3u du  
tan u du 
3
3  2  3



1
1
 4
tan (3 x ) dx =  tan 2 (3x)  ln sec(3x)  
3
6
0
3
0
1
1
 3  
2  3 
 tan    ln sec   
 4  3
 4 
6
1 2 1
1 1
(0)  ln 1   ln
6
3
6 3
1
1
1
 1
2
2
 tan 0  ln sec0   (1)  ln  2 
3
3
6
 6
 2 .
(6) Use the trigonometric identity cos 2  


1  cos 2
to get
2


cos 2 (2 x) dx 
1  cos(4 x)
1
1
1
1
dx 
1dx 
cos(4 x) dx  x  sin 4 x  
2
2
2
2
8

4

cos 2 (2 x) dx =
0
1    1
 1
1

    sin     (0)  sin( 0)   .
8
8
2  4  8
 2
1
(7) Use the trigonometric identity sin x cos y  [sin( x  y )  sin( x  y )] to get
2


8

0
sin( 5x) cos(3x) dx 


1
1
1
1
sin( 2 x) dx 
sin( 8x) dx   cos( 2 x)  cos(8x) 
2
2
4
16
 1
  1
1
  1

sin( 5 x) cos(3x) dx   cos   cos    cos 0  cos 0 
16
 4  16

 4
  4
1 2  1 1 1 3 2
  
 

4  2  16 4 16
8
10
(8)
(9)

tan 3 x sec 3 x dx =

(sec 2 x  1) sec 2 x (sec x tan x dx)  sec 4 x (sec x tan x dx) 

1
1
sec 2 x (sec x tan x dx)  sec 5 x  sec 3 x  C .
5
3
(10)


1

5
2
cos x dx 
 cos x sin
cos 3 x sin 2 x dx =
2
2
1
2
1  sin xcos xdx 
2
3
7
2
2
(sin x) 2  (sin x) 2  C .
3
7
x cos x dx  
 1  sin
2


x sin 2 x cos x dx 

sin 3 x
cos x
(cos x)

dx 
1
2

(cos x)
1

2
sin 2 x (sin x dx 

(cos x)
1
3
(sin x dx)  (cos x) 2 (sin x dx)  2(cos x)
2
1
1  cos xsin x dx 
2
2
5
2
 (cos x) 2 
5
5


5 
8
2

   2     2  
dx =  2 cos    cos      2 cos 0  cos 0  2   .
5
cos x
 2  5   2   
 5



sin 3 x
(12) Use the trigonometric identities cos 2  


(sin x)
1
1
sin 2 x (cos x dx)  sin 4 x (cos x dx)  sin 3 x  sin 5 x  C .
3
5
2
0

sin x cos 2 x ( cos x dx) 
(sin x) 2 cos x dx  (sin x)



sin x cos 3 x dx =


(11)




tan 2 x sec 2 x (sec x tan x dx) 
sin 2 x cos 2 xdx 

1  cos 2
1  cos 2
and sin 2  
.
2
2
1
 1  cos 2 x  1  cos 2 x 


 dx 
2
2
4



11
 1  cos 2xdx 
2




1
1
1
1  1  cos 4 x 
1
1
1 dx 
cos 2 2 x dx  x 
1 dx 

 dx  x 
4
4
4
4 
2
4
8


1
1
1
1
1
1
cos 4 x dx  x  x  sin 4 x  C  x  sin 4 x  C .
8
4
8
32
8
32
(13)

tan 5 x sec xdx 
 sec

2

tan 4 x tan x sec x dx 

2
x  1 sec x tan x dx 
 tan x
2
2
tan x sec x dx 
 sec x  2 sec x  1sec x tan x dx 
4
2


sec 4 x sec x tan x dx   2 sec 2 xsec x tan x dx   sec x tan x dx 
1
2
sec 5 x  sec 3 x  sec x  C .
5
3
12
Related documents