Download graphs of the six trigonometric functions and their properties

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
GRAPHS OF THE SIX TRIGONOMETRIC FUNCTIONS AND THEIR PROPERTIES
I. The graph of y = sin x
x
y = sin x (x,y)
0
π/6
π/2
5π/6
π
7π/6
3π/2
11π/6
2π
Properties of the sine function:
1. Domain _________________
2. Range _________________
3. Symmetry _______________
4. Type of Function __________
5. x-intercepts __________________
6. y-intercepts __________________
7. Maximum Values ____________
8. Minimum Values ____________
9. Period __________
II. The graph of y = cos x
x
y = cos x (x,y)
0
π/3
π/2
2π/3
π
4π/3
3π/2
5π/3
2π
1
Properties of the cosine function:
1. Domain _________________
2. Range _________________
3. Symmetry _______________
4. Type of Function __________
5. x-intercepts __________________
6. y-intercepts __________________
7. Maximum Values ____________
8. Minimum Values ____________
9. Period __________
III. The graph of y = csc x
Properties of the cosecant function:
1. Domain _________________
2. Range _________________
3. Symmetry _______________
4. Type of Function __________
5. x-intercepts __________________
6. y-intercepts __________________
7. Maximum Values ____________
8. Minimum Values ____________
9. Period __________
IV. The graph of y = sec x
2
Properties of the secant function:
1. Domain _________________
2. Range _________________
3. Symmetry _______________
4. Type of Function __________
5. x-intercepts __________________
6. y-intercepts __________________
7. Maximum Values ____________
8. Minimum Values ____________
9. Period __________
Transformations on the Graphs of the Sine, Cosine, Secant and Cosecant Functions
y = a fnct b (x + c) + d
a (amplitude) – | a |, creates a vertical compression or stretch
Ex. y = 2 sin x
b (period) – change in period, 2 π / | b |, creates a horizontal
compression or stretch
Ex. y = ½ sin 4 x
c creates a horizontal shift to the right or left
Ex. y = 4 cos (x – π/3)
d creates a vertical translation up or down
Ex. y = ¼ cos (x + π) - 2
Note: When a negative appears in front of the a, then the function is reflected about the
x-axis.
Ex. y = - cos 2 x + ½
V. The graph y = tan x
x
y = tan x (x,y)
-π/3
-π/4
-π/6
0
π/6
π/4
π/3
Properties of the tangent function:
1. Domain _________________
2. Range _________________
3. Symmetry _______________
4. Type of Function __________
5. x-intercepts __________________
6. Period ________
3
VI. The graph y = cot x
x
y = cot x (x,y)
0
π/6
π/4
π/3
π/2
2π/3
3π/4
5π/6
Properties of the cotangent function:
1. Domain _________________
2. Range _________________
3. Symmetry _______________
4. Type of Function __________
5. x-intercepts __________________
6. Period ________
Transformations on the Graphs of the Tangent and Cotangent Functions
y = a fnct b x + c
Ex. y = tan 3 x + 2
Ex. y = - ½ cot ¼ x - 5
4
Related documents