• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
lect_10
lect_10

Principles of Technology
Principles of Technology

magnetic field - bba-npreiser
magnetic field - bba-npreiser

Magnetism
Magnetism

... normal to the area as in the previous slide. ...
The first results of the cilindric Vlasov
The first results of the cilindric Vlasov

... (Lancellotti and Dorning, 1998) Lancellotti and Dorning showed that there exist “critical initial states” that mark the transition between the Landau regime (in which the wave is definitively damped to zero) ant the O’Neil regime (in which the electric field goes on oscillating around an approximate ...
PHY 2054 Haley N.
PHY 2054 Haley N.

Magnetic effect of electric current Sources of
Magnetic effect of electric current Sources of

Lecture 5: Cylinder equilibrium
Lecture 5: Cylinder equilibrium

... Cylindrical concepts The theta-pinch ...
EM 3 Section 7: Magnetic force, Currents and Biot Savart Law 7. 1
EM 3 Section 7: Magnetic force, Currents and Biot Savart Law 7. 1

Chapter #10 magnetism-multiple
Chapter #10 magnetism-multiple

PSI Physics - Magnetism Multiple Choice Questions
PSI Physics - Magnetism Multiple Choice Questions

lec27
lec27

... It is not obvious where they are, because we are so focused on details when we learn this material for the first time. One of the big ideas arises from the observation that magnetic poles always come in pairs, unlike + and – charged particles. In the next lecture, I’ll introduce the idea of magnetic ...
magnetic field
magnetic field

... When electric charges are in motion they exert forces on each other that can’t be explained by Coulomb’s law. If two parallel current carrying conductors are near each other they attract each other when the currents are in the same direction and repel each other when the currents are in opposite dir ...
slides
slides

do physics online motors and generators magnetic fields
do physics online motors and generators magnetic fields

Lesson 1: 4th Grade Science: "A Hairy Picture": Magnets Big Idea
Lesson 1: 4th Grade Science: "A Hairy Picture": Magnets Big Idea

Estimation of permeability tensor and dielectric permittivity of ferrites
Estimation of permeability tensor and dielectric permittivity of ferrites

Magnetic Field
Magnetic Field

Exam - UCSD Physics
Exam - UCSD Physics

... A nonuniform electric field is directed along the x-axis at all points in space. This magnitude of the field varies with x, but not with respect to y or z. The axis of a cylindrical surface, 0.80 m long and 0.20 m in diameter, is aligned parallel to the x-axis. The electric fields E1 and E2, at the ...
COURSE EXPECTATIONS COURSE CODE: PHYS
COURSE EXPECTATIONS COURSE CODE: PHYS

Chapter 29
Chapter 29

Chapter 21
Chapter 21

投影片 1
投影片 1

... • The turning of a coil in a magnetic field produces motional emfs in both sides of the coil which add. • Since the component of the velocity perpendicular to the magnetic field changes sinusoidally with the rotation, the generated voltage is sinusoidal or AC. • This process can be described in term ...
PPT
PPT

... • A square loop of wire of side L is rotated at a uniform frequency f in the presence of a uniform magnetic field B as shown. • Describe the EMF induced in the loop. ...
Magnetohydrodynamics (MHD).
Magnetohydrodynamics (MHD).

< 1 ... 104 105 106 107 108 109 110 111 112 ... 228 >

Magnetic field



A magnetic field is the magnetic effect of electric currents and magnetic materials. The magnetic field at any given point is specified by both a direction and a magnitude (or strength); as such it is a vector field. The term is used for two distinct but closely related fields denoted by the symbols B and H, where H is measured in units of amperes per meter (symbol: A·m−1 or A/m) in the SI. B is measured in teslas (symbol:T) and newtons per meter per ampere (symbol: N·m−1·A−1 or N/(m·A)) in the SI. B is most commonly defined in terms of the Lorentz force it exerts on moving electric charges.Magnetic fields can be produced by moving electric charges and the intrinsic magnetic moments of elementary particles associated with a fundamental quantum property, their spin. In special relativity, electric and magnetic fields are two interrelated aspects of a single object, called the electromagnetic tensor; the split of this tensor into electric and magnetic fields depends on the relative velocity of the observer and charge. In quantum physics, the electromagnetic field is quantized and electromagnetic interactions result from the exchange of photons.In everyday life, magnetic fields are most often encountered as a force created by permanent magnets, which pull on ferromagnetic materials such as iron, cobalt, or nickel, and attract or repel other magnets. Magnetic fields are widely used throughout modern technology, particularly in electrical engineering and electromechanics. The Earth produces its own magnetic field, which is important in navigation, and it shields the Earth's atmosphere from solar wind. Rotating magnetic fields are used in both electric motors and generators. Magnetic forces give information about the charge carriers in a material through the Hall effect. The interaction of magnetic fields in electric devices such as transformers is studied in the discipline of magnetic circuits.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report