Pre-Lab: Electric Fields
... 2. If a graph of V vs. I is not a straight line, does that material follow Ohm’s Law? a. Yes b. No c. It depends on the temperature during the experiment. 3. A conductor that obeys Ohm’s Law has a constant resistance independent of the _____________________, if the ____________________ is constant. ...
... 2. If a graph of V vs. I is not a straight line, does that material follow Ohm’s Law? a. Yes b. No c. It depends on the temperature during the experiment. 3. A conductor that obeys Ohm’s Law has a constant resistance independent of the _____________________, if the ____________________ is constant. ...
Magnetism
... In an experiment with cosmic rays, a vertical beam of particles that have a charge magnitude of 3e and a mass 12 times the proton mass enters a uniform horizontal Magnetic field of 0.250T and is bent in a semicircle of 95cm. Find the speed of the particle. ...
... In an experiment with cosmic rays, a vertical beam of particles that have a charge magnitude of 3e and a mass 12 times the proton mass enters a uniform horizontal Magnetic field of 0.250T and is bent in a semicircle of 95cm. Find the speed of the particle. ...
Work, Energy and Momentum Notes
... Say we need to transmit a certain amount of power (P = IV) a high voltage means a low current. since power lost by the wire due to resistance is Ploss = I2R low current means power loss is at a minimum ...
... Say we need to transmit a certain amount of power (P = IV) a high voltage means a low current. since power lost by the wire due to resistance is Ploss = I2R low current means power loss is at a minimum ...
Superconductivity
Superconductivity is a phenomenon of exactly zero electrical resistance and expulsion of magnetic fields occurring in certain materials when cooled below a characteristic critical temperature. It was discovered by Dutch physicist Heike Kamerlingh Onnes on April 8, 1911 in Leiden. Like ferromagnetism and atomic spectral lines, superconductivity is a quantum mechanical phenomenon. It is characterized by the Meissner effect, the complete ejection of magnetic field lines from the interior of the superconductor as it transitions into the superconducting state. The occurrence of the Meissner effect indicates that superconductivity cannot be understood simply as the idealization of perfect conductivity in classical physics.The electrical resistivity of a metallic conductor decreases gradually as temperature is lowered. In ordinary conductors, such as copper or silver, this decrease is limited by impurities and other defects. Even near absolute zero, a real sample of a normal conductor shows some resistance. In a superconductor, the resistance drops abruptly to zero when the material is cooled below its critical temperature. An electric current flowing through a loop of superconducting wire can persist indefinitely with no power source.In 1986, it was discovered that some cuprate-perovskite ceramic materials have a critical temperature above 90 K (−183 °C). Such a high transition temperature is theoretically impossible for a conventional superconductor, leading the materials to be termed high-temperature superconductors. Liquid nitrogen boils at 77 K, and superconduction at higher temperatures than this facilitates many experiments and applications that are less practical at lower temperatures.