7th Workshop on Quantum Chaos and Localisation Phenomena
... focused on the following topics: quantum chaos and non-linear classical systems, quantum and microwave graphs and billiards, atoms in strong electromagnetic fields, Anderson localisation, quantum chaos, quantum computing and physics of low dimensional systems. In the talks and poster presentations t ...
... focused on the following topics: quantum chaos and non-linear classical systems, quantum and microwave graphs and billiards, atoms in strong electromagnetic fields, Anderson localisation, quantum chaos, quantum computing and physics of low dimensional systems. In the talks and poster presentations t ...
Handout
... In both the classical and the quantum settings, we must be able to represent the composite of two systems. Here we show that the two notions of composition correspond to a common notion in the framework of ∗-algebras. System Q Given two state spaces H1 and H2 , we construct the composite system as t ...
... In both the classical and the quantum settings, we must be able to represent the composite of two systems. Here we show that the two notions of composition correspond to a common notion in the framework of ∗-algebras. System Q Given two state spaces H1 and H2 , we construct the composite system as t ...
Assignment 4
... (a) Find the cumulative distribution function of the particle’s kinetic energy T = 12 X 2 . (b) Find the probability density function of T . (c) Determine the mean and standard deviation of T in two ways: (i) using the p.d.f. of T from part (b), (ii) using the Law of the Unconscious Statistician and ...
... (a) Find the cumulative distribution function of the particle’s kinetic energy T = 12 X 2 . (b) Find the probability density function of T . (c) Determine the mean and standard deviation of T in two ways: (i) using the p.d.f. of T from part (b), (ii) using the Law of the Unconscious Statistician and ...
Giovannini, D., Romero, J., Leach, J., Dudley, A, Forbes, A, and
... complete sets of MUBs using simple procedures [33]. For these cases, which include the dimensions 2–5, the states fj‘ig can be chosen to be one of the MUBs. The states belonging to the remaining d MUBs are found to be superpositions of the basis pffiffiffi states with coefficients of equal magnitude jc‘ j ...
... complete sets of MUBs using simple procedures [33]. For these cases, which include the dimensions 2–5, the states fj‘ig can be chosen to be one of the MUBs. The states belonging to the remaining d MUBs are found to be superpositions of the basis pffiffiffi states with coefficients of equal magnitude jc‘ j ...
Quantum Mechanics and Chaos Theory
... colliding with the top of the mushroom close enough to the center-line that they are reflected back into the stem without entering the rest of the cap (they must also avoid hitting the “vertical” stem rails too close to the cap). Now, to see that chaotic trajectories are also possible, imagine start ...
... colliding with the top of the mushroom close enough to the center-line that they are reflected back into the stem without entering the rest of the cap (they must also avoid hitting the “vertical” stem rails too close to the cap). Now, to see that chaotic trajectories are also possible, imagine start ...
Quantum Information and the Representation Theory of the
... Hilbert spaces of dimension enE(ψ) , which in turn can be broken up into nE(ψ) log d maximally entangled states between spaces of dimension d. 5. Partitions and the Representation Theory of Sn and GL(d) Quantum states of a d-level system are represented by vectors |φ i ∈ H, where H = Cd . The Hilber ...
... Hilbert spaces of dimension enE(ψ) , which in turn can be broken up into nE(ψ) log d maximally entangled states between spaces of dimension d. 5. Partitions and the Representation Theory of Sn and GL(d) Quantum states of a d-level system are represented by vectors |φ i ∈ H, where H = Cd . The Hilber ...
demartini
... .1) The methods of the classical Differential Geometry may be considered as an inspiring context in which the relevant paradigms of modern physics can be investigated satisfactorily by a direct , logical, (likely) “complete” theoretical approach. .2) Quantum Mechanics may be thought of as a “gauge t ...
... .1) The methods of the classical Differential Geometry may be considered as an inspiring context in which the relevant paradigms of modern physics can be investigated satisfactorily by a direct , logical, (likely) “complete” theoretical approach. .2) Quantum Mechanics may be thought of as a “gauge t ...
Quantum Computers, Factoring, and Decoherence
... where × is defined as the exclusive-or (XOR) function, and gives the Hamming distance[8] between a and a′ . ξ is a constant parameter which depends on the particular realization of the quantum computer. The measurement results in a probability distribution, shown in Fig. 2, which differs from the on ...
... where × is defined as the exclusive-or (XOR) function, and gives the Hamming distance[8] between a and a′ . ξ is a constant parameter which depends on the particular realization of the quantum computer. The measurement results in a probability distribution, shown in Fig. 2, which differs from the on ...
Generating nonclassical quantum input field states with modulating
... Y (t) = h(t – s) dB(s) where h is a causal kernel function. In practice this convolution may be physically implementable by passing the input through a dynamical system, such as an electronic circuit, an obtaining Y as output. The resulting output will have a nonflat spectrum SY (ω) ≡ |H(ω)| , where ...
... Y (t) = h(t – s) dB(s) where h is a causal kernel function. In practice this convolution may be physically implementable by passing the input through a dynamical system, such as an electronic circuit, an obtaining Y as output. The resulting output will have a nonflat spectrum SY (ω) ≡ |H(ω)| , where ...