• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Remarks on the Cartan Formula and Its Applications
Remarks on the Cartan Formula and Its Applications

... A generalized almost complex structure on M̌ is a smooth section J of the endomorphism bundle End(T ⊕ T ∗ ), which satisfies both symplectic and complex conditions, i.e. J ∗ = −J (equivalently, orthogonal with respect to the canonical inner product (4.1)) and J 2 = −1. We can show that the obstructi ...
1300Y Geometry and Topology, Assignment 1 Exercise 1. Let Γ be a
1300Y Geometry and Topology, Assignment 1 Exercise 1. Let Γ be a

... Exercise 1. Let Γ be a discrete group (a group with a countable number of elements, each one of which is an open set). Show (easy) that Γ is a zerodimensional Lie group. Suppose that Γ acts smoothly on a manifold M̃ , meaning that the action map θ :Γ × M̃ −→ M̃ (h, x) 7→ h · x is C ∞ . Suppose also ...
Symmetric Spaces
Symmetric Spaces

... (the component of y in x-direction, ⟨y, x⟩x, is preserved while the orthogonal complement y⟨y, x⟩x changes sign). In this case, the symmetries generate the full isometry group which is the orthogonal group O(n + 1). The isotropy group of the last standard unit vector en+1 = (0, ..., 0, 1)T is O(n) ⊂ ...
PDF
PDF

... with the topology induced from R2 . X2 is often called the “topologist’s sine curve”, and X is its closure. X is not path-connected. Indeed, assume to the contrary that there exists a path γ : [0, 1] → X with γ(0) = ( π1 , 0) and γ(1) = (0, 0). Let c = inf {t ∈ [0, 1] | γ(t) ∈ X1 } . Then γ([0, c]) ...
PDF
PDF

... We list the following commonly quoted properties of compact topological spaces. • A closed subset of a compact space is compact • A compact subspace of a Hausdorff space is closed • The continuous image of a compact space is compact • Compactness is equivalent to sequential compactness in the metric ...
Program for ``Topology and Applications``
Program for ``Topology and Applications``

13 Orthogonal groups
13 Orthogonal groups

< 1 2 3

Hermitian symmetric space

In mathematics, a Hermitian symmetric space is a Hermitian manifold which at every point has as an inversion symmetry preserving the Hermitian structure. First studied by Élie Cartan, they form a natural generalization of the notion of Riemannian symmetric space from real manifolds to complex manifolds.Every Hermitian symmetric space is a homogeneous space for its isometry group and has a unique decomposition as a product of irreducible spaces and a Euclidean space. The irreducible spaces arise in pairs as a non-compact space that, as Borel showed, can be embedded as an open subspace of its compact dual space. Harish Chandra showed that each non-compact space can be realized as a bounded symmetric domain in a complex vector space. The simplest case involves the groups SU(2), SU(1,1) and their common complexification SL(2,C). In this case the non-compact space is the unit disk, a homogeneous space for SU(1,1). It is a bounded domain in the complex plane C. The one-point compactification of C, the Riemann sphere, is the dual space, a homogeneous space for SU(2) and SL(2,C).Irreducible compact Hermitian symmetric spaces are exactly the homogeneous spaces of simple compact Lie groups by maximal closed connected subgroups which contain a maximal torus and have center isomorphic to T. There is a complete classification of irreducible spaces, with four classical series, studied by Cartan, and two exceptional cases; the classification can be deduced fromBorel–de Siebenthal theory, which classifies closed connected subgroups containing a maximal torus. Hermitian symmetric spaces appear in the theory of Jordan triple systems, several complex variables, complex geometry, automorphic forms and group representations, in particular permitting the construction of the holomorphic discrete series representations of semisimple Lie groups.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report