• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
$doc.title

Properties and detection of spin nematic order in strongly correlated
Properties and detection of spin nematic order in strongly correlated

$doc.title

Spin-dependent Transport of Interacting Electrons in Mesoscopic
Spin-dependent Transport of Interacting Electrons in Mesoscopic

... devices on a quasi-classical level is based on the Boltzmann equation [19]. It describes the dynamics of a probability distribution f (~x, ~p, t) to find a particle with momentum ~p at position ~x. The Boltzmann distribution function obviously is a classical object, as in quantum mechanics the simul ...
Remarks on the controllability of the Schrödinger equation
Remarks on the controllability of the Schrödinger equation

... Numerical Challenges” of the CRM, for their kind invitation, warm hospitality and support. 2. Exact controllability of the Schrödinger equation There are several results on the exact controllability of the Schrödinger equation (1.1). One of the most relevant ones is certainly that due to G. Lebeau ...
Spatial entanglement in two-electron atomic systems
Spatial entanglement in two-electron atomic systems

6 Field-Theoretical Methods in Quantum Magnetism
6 Field-Theoretical Methods in Quantum Magnetism

Review on Nucleon Spin Structure
Review on Nucleon Spin Structure

... • We will not repeat those but discuss two problems related to nucleon spin which we believe where confusions remain. 1.It is still a quite popular idea that the polarized deep inelastic lepton-nucleon scattering (DIS) measured quark spin invalidates the constituent quark model (CQM). I will show th ...
Computational power of quantum many
Computational power of quantum many

... In the standard model of quantum computation, a set of two-level systems initially in a product state is subjected to a unitary time-evolution in the form of sequential bipartite quantum gates [82]. At the end of the evolution, the systems are measured in some local basis, in order to read out the ...
Novel Results for Condensed Matter Systems with Time Reversal Symmetry
Novel Results for Condensed Matter Systems with Time Reversal Symmetry

Introduction to the thermodynamic Bethe ansatz
Introduction to the thermodynamic Bethe ansatz

Hubbard and Kondo lattice models in two dimensions: A QMC study
Hubbard and Kondo lattice models in two dimensions: A QMC study

Mass-imbalanced Three-Body Systems in Two Dimensions
Mass-imbalanced Three-Body Systems in Two Dimensions

Regular/irregular phase space structure of HCN/HNC
Regular/irregular phase space structure of HCN/HNC

Holographic non-Fermi
Holographic non-Fermi

Decoherence and the Transition from Quantum to Classical
Decoherence and the Transition from Quantum to Classical

Electron transport, interaction and spin in graphene and graphene nanoribbons Artsem Shylau
Electron transport, interaction and spin in graphene and graphene nanoribbons Artsem Shylau

... to find a many-body state of the system |Ψ(~r, t)i at any time and then calculate the expectation value of the current operator Iˆ = ...
An algorithmic construction of entropies in higher-order
An algorithmic construction of entropies in higher-order

... quantifier elimination problem in (9) reveals all α ∈ R, for which the respective production term P can be rewritten as an integral over a pointwise non-negative function by means of integration by parts of the type (7). The latter seems to be the most common technique in proofs of the dissipation p ...
The Compton-Schwarzschild correspondence from extended de
The Compton-Schwarzschild correspondence from extended de

Why were Matrix Mechanics and Wave
Why were Matrix Mechanics and Wave

Tree Search and Quantum Computation
Tree Search and Quantum Computation

PPT
PPT

Investigation of the characteristic properties of high - Prof. Shih
Investigation of the characteristic properties of high - Prof. Shih

Spin Squeezing, Entanglement and Quantum Metrology
Spin Squeezing, Entanglement and Quantum Metrology

Quantum Nonequilibrium Dynamics: Transport, Entanglement, and Thermalization
Quantum Nonequilibrium Dynamics: Transport, Entanglement, and Thermalization

... condensed matter systems. Longer length scale means its behavior is more easily detected in the lab. As a result, dimensional analyses already make ultracold atomic gases be favorable candidates for direct investigation of quantum dynamics. One of beautiful features of cold atom systems is the unive ...
< 1 ... 5 6 7 8 9 10 11 12 13 ... 157 >

Wave function



A wave function in quantum mechanics describes the quantum state of an isolated system of one or more particles. There is one wave function containing all the information about the entire system, not a separate wave function for each particle in the system. Its interpretation is that of a probability amplitude. Quantities associated with measurements, such as the average momentum of a particle, can be derived from the wave function. It is a central entity in quantum mechanics and is important in all modern theories, like quantum field theory incorporating quantum mechanics, while its interpretation may differ. The most common symbols for a wave function are the Greek letters ψ or Ψ (lower-case and capital psi).For a given system, once a representation corresponding to a maximal set of commuting observables and a suitable coordinate system is chosen, the wave function is a complex-valued function of the system's degrees of freedom corresponding to the chosen representation and coordinate system, continuous as well as discrete. Such a set of observables, by a postulate of quantum mechanics, are Hermitian linear operators on the space of states representing a set of physical observables, like position, momentum and spin that can, in principle, be simultaneously measured with arbitrary precision. Wave functions can be added together and multiplied by complex numbers to form new wave functions, and hence are elements of a vector space. This is the superposition principle of quantum mechanics. This vector space is endowed with an inner product such that it is a complete metric topological space with respect to the metric induced by the inner product. In this way the set of wave functions for a system form a function space that is a Hilbert space. The inner product is a measure of the overlap between physical states and is used in the foundational probabilistic interpretation of quantum mechanics, the Born rule, relating transition probabilities to inner products. The actual space depends on the system's degrees of freedom (hence on the chosen representation and coordinate system) and the exact form of the Hamiltonian entering the equation governing the dynamical behavior. In the non-relativistic case, disregarding spin, this is the Schrödinger equation.The Schrödinger equation determines the allowed wave functions for the system and how they evolve over time. A wave function behaves qualitatively like other waves, such as water waves or waves on a string, because the Schrödinger equation is mathematically a type of wave equation. This explains the name ""wave function"", and gives rise to wave–particle duality. The wave of the wave function, however, is not a wave in physical space; it is a wave in an abstract mathematical ""space"", and in this respect it differs fundamentally from water waves or waves on a string.For a given system, the choice of which relevant degrees of freedom to use are not unique, and correspondingly the domain of the wave function is not unique. It may be taken to be a function of all the position coordinates of the particles over position space, or the momenta of all the particles over momentum space, the two are related by a Fourier transform. These descriptions are the most important, but they are not the only possibilities. Just like in classical mechanics, canonical transformations may be used in the description of a quantum system. Some particles, like electrons and photons, have nonzero spin, and the wave function must include this fundamental property as an intrinsic discrete degree of freedom. In general, for a particle with half-integer spin the wave function is a spinor, for a particle with integer spin the wave function is a tensor. Particles with spin zero are called scalar particles, those with spin 1 vector particles, and more generally for higher integer spin, tensor particles. The terminology derives from how the wave functions transform under a rotation of the coordinate system. No elementary particle with spin 3⁄2 or higher is known, except for the hypothesized spin 2 graviton. Other discrete variables can be included, such as isospin. When a system has internal degrees of freedom, the wave function at each point in the continuous degrees of freedom (e.g. a point in space) assigns a complex number for each possible value of the discrete degrees of freedom (e.g. z-component of spin). These values are often displayed in a column matrix (e.g. a 2 × 1 column vector for a non-relativistic electron with spin 1⁄2).In the Copenhagen interpretation, an interpretation of quantum mechanics, the squared modulus of the wave function, |ψ|2, is a real number interpreted as the probability density of measuring a particle as being at a given place at a given time or having a definite momentum, and possibly having definite values for discrete degrees of freedom. The integral of this quantity, over all the system's degrees of freedom, must be 1 in accordance with the probability interpretation, this general requirement a wave function must satisfy is called the normalization condition. Since the wave function is complex valued, only its relative phase and relative magnitude can be measured. Its value does not in isolation tell anything about the magnitudes or directions of measurable observables; one has to apply quantum operators, whose eigenvalues correspond to sets of possible results of measurements, to the wave function ψ and calculate the statistical distributions for measurable quantities.The unit of measurement for ψ depends on the system, and can be found by dimensional analysis of the normalization condition for the system. For one particle in three dimensions, its units are [length]−3/2, because an integral of |ψ|2 over a region of three-dimensional space is a dimensionless probability.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report