
Spin squeezing and quantum correlations
... eigen states of S 2 and Sz with respect to any choice of the axis of quantization. We refer to such states as non-oriented. While an oriented state is characterized by a single direction, viz., the axis of quantization (specified by two real variables θ ; φ ) in the physical space, a non-oriented st ...
... eigen states of S 2 and Sz with respect to any choice of the axis of quantization. We refer to such states as non-oriented. While an oriented state is characterized by a single direction, viz., the axis of quantization (specified by two real variables θ ; φ ) in the physical space, a non-oriented st ...
1 Introduction to quantum mechanics
... considering the wavefunctions which describe electrons in atoms (atomic orbitals) or molecules (molecular orbitals). One often used interpretation of such electronic wavefunctions is to say that the square of the wavefunction gives the probability of finding the electron at that point. Wavefunctions ...
... considering the wavefunctions which describe electrons in atoms (atomic orbitals) or molecules (molecular orbitals). One often used interpretation of such electronic wavefunctions is to say that the square of the wavefunction gives the probability of finding the electron at that point. Wavefunctions ...
Copyright c 2017 by Robert G. Littlejohn Physics 221B Spring 2017
... mechanics, and random phase assumptions. In this manner one can calculate the rate of emission of radiation (the power emitted) by a system of charged particles, both in the presence of an external field (stimulated emission), and in its absence (spontaneous emission). The argument is tricky and con ...
... mechanics, and random phase assumptions. In this manner one can calculate the rate of emission of radiation (the power emitted) by a system of charged particles, both in the presence of an external field (stimulated emission), and in its absence (spontaneous emission). The argument is tricky and con ...
Supplementary Material
... lines), adding two-pair (red lines), and two- and four-pair excitations (blue lines). We see that, for each value of 2S z , the inclusion of correlation effects lowers the energies of the system, but this energy shift saturates quickly with the increase of the number of pair excitations. As the spin ...
... lines), adding two-pair (red lines), and two- and four-pair excitations (blue lines). We see that, for each value of 2S z , the inclusion of correlation effects lowers the energies of the system, but this energy shift saturates quickly with the increase of the number of pair excitations. As the spin ...
Fractional quantum Hall effect in optical lattices
... As noted above the FQH effect can be realized by simply rotating and cooling atoms confined in a harmonic trap. In this situation, it can be shown that the Laughlin wave function exactly describes the ground state of the many-body system 关7,14兴. In optical lattices, on the other hand, there are a nu ...
... As noted above the FQH effect can be realized by simply rotating and cooling atoms confined in a harmonic trap. In this situation, it can be shown that the Laughlin wave function exactly describes the ground state of the many-body system 关7,14兴. In optical lattices, on the other hand, there are a nu ...
Representation of Quantum Field Theory by Elementary Quantum
... More exactly the states in the tensor space have to be represented in space-time. The method to achieve a transition from tensor space to space-time as it is considered in this paper consists in the definition of four pairs of position and momentum operators from the four pairs of creation and annih ...
... More exactly the states in the tensor space have to be represented in space-time. The method to achieve a transition from tensor space to space-time as it is considered in this paper consists in the definition of four pairs of position and momentum operators from the four pairs of creation and annih ...
Experimental nonlocal and surreal Bohmian trajectories
... particle does not follow a trajectory, because it does not have a simultaneous position and momentum. Nonetheless, it is possible to reinterpret the quantum formalism as describing particles following definite trajectories, each with a precisely defined position at each instant in time. However, in ...
... particle does not follow a trajectory, because it does not have a simultaneous position and momentum. Nonetheless, it is possible to reinterpret the quantum formalism as describing particles following definite trajectories, each with a precisely defined position at each instant in time. However, in ...
Phys.Rev.Lett. 84, 1
... mystery of quantum mechanics [2]. The actual mechanisms that enforce complementarity vary from one experimental situation to another. In the two-slit experiment, the common “wisdom” is that the position-momentum uncerh̄ tainty relation dxdp $ 2 makes it impossible to determine which slit the photon ...
... mystery of quantum mechanics [2]. The actual mechanisms that enforce complementarity vary from one experimental situation to another. In the two-slit experiment, the common “wisdom” is that the position-momentum uncerh̄ tainty relation dxdp $ 2 makes it impossible to determine which slit the photon ...
Wave function

A wave function in quantum mechanics describes the quantum state of an isolated system of one or more particles. There is one wave function containing all the information about the entire system, not a separate wave function for each particle in the system. Its interpretation is that of a probability amplitude. Quantities associated with measurements, such as the average momentum of a particle, can be derived from the wave function. It is a central entity in quantum mechanics and is important in all modern theories, like quantum field theory incorporating quantum mechanics, while its interpretation may differ. The most common symbols for a wave function are the Greek letters ψ or Ψ (lower-case and capital psi).For a given system, once a representation corresponding to a maximal set of commuting observables and a suitable coordinate system is chosen, the wave function is a complex-valued function of the system's degrees of freedom corresponding to the chosen representation and coordinate system, continuous as well as discrete. Such a set of observables, by a postulate of quantum mechanics, are Hermitian linear operators on the space of states representing a set of physical observables, like position, momentum and spin that can, in principle, be simultaneously measured with arbitrary precision. Wave functions can be added together and multiplied by complex numbers to form new wave functions, and hence are elements of a vector space. This is the superposition principle of quantum mechanics. This vector space is endowed with an inner product such that it is a complete metric topological space with respect to the metric induced by the inner product. In this way the set of wave functions for a system form a function space that is a Hilbert space. The inner product is a measure of the overlap between physical states and is used in the foundational probabilistic interpretation of quantum mechanics, the Born rule, relating transition probabilities to inner products. The actual space depends on the system's degrees of freedom (hence on the chosen representation and coordinate system) and the exact form of the Hamiltonian entering the equation governing the dynamical behavior. In the non-relativistic case, disregarding spin, this is the Schrödinger equation.The Schrödinger equation determines the allowed wave functions for the system and how they evolve over time. A wave function behaves qualitatively like other waves, such as water waves or waves on a string, because the Schrödinger equation is mathematically a type of wave equation. This explains the name ""wave function"", and gives rise to wave–particle duality. The wave of the wave function, however, is not a wave in physical space; it is a wave in an abstract mathematical ""space"", and in this respect it differs fundamentally from water waves or waves on a string.For a given system, the choice of which relevant degrees of freedom to use are not unique, and correspondingly the domain of the wave function is not unique. It may be taken to be a function of all the position coordinates of the particles over position space, or the momenta of all the particles over momentum space, the two are related by a Fourier transform. These descriptions are the most important, but they are not the only possibilities. Just like in classical mechanics, canonical transformations may be used in the description of a quantum system. Some particles, like electrons and photons, have nonzero spin, and the wave function must include this fundamental property as an intrinsic discrete degree of freedom. In general, for a particle with half-integer spin the wave function is a spinor, for a particle with integer spin the wave function is a tensor. Particles with spin zero are called scalar particles, those with spin 1 vector particles, and more generally for higher integer spin, tensor particles. The terminology derives from how the wave functions transform under a rotation of the coordinate system. No elementary particle with spin 3⁄2 or higher is known, except for the hypothesized spin 2 graviton. Other discrete variables can be included, such as isospin. When a system has internal degrees of freedom, the wave function at each point in the continuous degrees of freedom (e.g. a point in space) assigns a complex number for each possible value of the discrete degrees of freedom (e.g. z-component of spin). These values are often displayed in a column matrix (e.g. a 2 × 1 column vector for a non-relativistic electron with spin 1⁄2).In the Copenhagen interpretation, an interpretation of quantum mechanics, the squared modulus of the wave function, |ψ|2, is a real number interpreted as the probability density of measuring a particle as being at a given place at a given time or having a definite momentum, and possibly having definite values for discrete degrees of freedom. The integral of this quantity, over all the system's degrees of freedom, must be 1 in accordance with the probability interpretation, this general requirement a wave function must satisfy is called the normalization condition. Since the wave function is complex valued, only its relative phase and relative magnitude can be measured. Its value does not in isolation tell anything about the magnitudes or directions of measurable observables; one has to apply quantum operators, whose eigenvalues correspond to sets of possible results of measurements, to the wave function ψ and calculate the statistical distributions for measurable quantities.The unit of measurement for ψ depends on the system, and can be found by dimensional analysis of the normalization condition for the system. For one particle in three dimensions, its units are [length]−3/2, because an integral of |ψ|2 over a region of three-dimensional space is a dimensionless probability.