• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Lecture 3. Submanifolds
Lecture 3. Submanifolds

1.6 Smooth functions and partitions of unity
1.6 Smooth functions and partitions of unity

BOOK REVIEW
BOOK REVIEW

Lecture 5 Notes
Lecture 5 Notes

Partitions of Unity
Partitions of Unity

PDF
PDF

Differential geometry for physicists
Differential geometry for physicists

Ph.D. Qualifying examination in topology Charles Frohman and
Ph.D. Qualifying examination in topology Charles Frohman and

HW1
HW1

Chapter 2: Manifolds
Chapter 2: Manifolds

Section 7: Manifolds with boundary Review definitions of
Section 7: Manifolds with boundary Review definitions of

Rn a vector space over R (or C) with canonical basis {e 1, ...,en
Rn a vector space over R (or C) with canonical basis {e 1, ...,en

PDF
PDF

< 1 ... 13 14 15 16 17

Manifold



In mathematics, a manifold is a topological space that resembles Euclidean space near each point. More precisely, each point of an n-dimensional manifold has a neighbourhood that is homeomorphic to the Euclidean space of dimension n. Lines and circles, but not figure eights, are one-dimensional manifolds. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, which can all be embedded in three dimensional real space, but also the Klein bottle and real projective plane which cannot.Although a manifold resembles Euclidean space near each point, globally it may not. For example, the surface of the sphere is not a Euclidean space, but in a region it can be charted by means of map projections of the region into the Euclidean plane (in the context of manifolds they are called charts). When a region appears in two neighbouring charts, the two representations do not coincide exactly and a transformation is needed to pass from one to the other, called a transition map.The concept of a manifold is central to many parts of geometry and modern mathematical physics because it allows more complicated structures to be described and understood in terms of the relatively well-understood properties of Euclidean space. Manifolds naturally arise as solution sets of systems of equations and as graphs of functions. Manifolds may have additional features. One important class of manifolds is the class of differentiable manifolds.This differentiable structure allows calculus to be done on manifolds. A Riemannian metric on a manifold allows distances and angles to be measured. Symplectic manifolds serve as the phase spaces in the Hamiltonian formalism of classical mechanics, while four-dimensional Lorentzian manifolds model spacetime in general relativity.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report