P221_2009_week1
... Mass has nothing to do with how much force is applied (except for gravity), it tells you only how an object will react to a given force!! If their forces are equal, making the net force zero, the buggy would not roll freely on its wheels, making the statement false. (many answered this way, anticipa ...
... Mass has nothing to do with how much force is applied (except for gravity), it tells you only how an object will react to a given force!! If their forces are equal, making the net force zero, the buggy would not roll freely on its wheels, making the statement false. (many answered this way, anticipa ...
Applications of Newton`s first law of motion
... Weight—the Force of Gravity; and the Normal Force An object at rest must have no net force on it. If it is sitting on a table, the force of gravity is still there; what other force is there? The force exerted perpendicular to a surface is called the normal force. It is exactly as large as needed to ...
... Weight—the Force of Gravity; and the Normal Force An object at rest must have no net force on it. If it is sitting on a table, the force of gravity is still there; what other force is there? The force exerted perpendicular to a surface is called the normal force. It is exactly as large as needed to ...
T = mv 2 / r
... Suppose an object was moving in a straight line with some velocity, v. According to Newton’s 1st Law of Motion, “An object in motion continues that motion unless a net external force acts on it”. If you want the object to move in a circle, some force must push or pull it towards the center of the c ...
... Suppose an object was moving in a straight line with some velocity, v. According to Newton’s 1st Law of Motion, “An object in motion continues that motion unless a net external force acts on it”. If you want the object to move in a circle, some force must push or pull it towards the center of the c ...
1 - HCC Learning Web
... 1. Two ropes are attached to a 40-kg object. The first rope applies a force of 25 N and the second, 40 N. If the two ropes are perpendicular to each other, what is the resultant acceleration of the object? a. 1.2 m/s2 b. 3.0 m/s2 c. 25 m/s2 d. 47 m/s2 2. Two blocks, joined by a string, have masses o ...
... 1. Two ropes are attached to a 40-kg object. The first rope applies a force of 25 N and the second, 40 N. If the two ropes are perpendicular to each other, what is the resultant acceleration of the object? a. 1.2 m/s2 b. 3.0 m/s2 c. 25 m/s2 d. 47 m/s2 2. Two blocks, joined by a string, have masses o ...
Document
... 13.1 Newton’s law of motion 1.Newton’s 2nd law of motion (1) A particle subjected to an unbalanced force experiences an acceleration direction as ...
... 13.1 Newton’s law of motion 1.Newton’s 2nd law of motion (1) A particle subjected to an unbalanced force experiences an acceleration direction as ...
Over head 2
... • What actually happened? You caused the card to accelerate horizontally. • Why did this happen? The force was applied to the card only – Inertia kept the coin from moving. • Do you think it would be different if you pulled it slowly? It should go with the card everytime. ...
... • What actually happened? You caused the card to accelerate horizontally. • Why did this happen? The force was applied to the card only – Inertia kept the coin from moving. • Do you think it would be different if you pulled it slowly? It should go with the card everytime. ...
net force
... If a horse pulls on a wagon at rest, the wagon pulls back equally as much on the horse. Will the wagon be set into motion? a. No, because the forces cancel each other out. b. Yes, because there is a net force acting on the wagon. c. Yes, because there is time delay between action and reaction. d. Y ...
... If a horse pulls on a wagon at rest, the wagon pulls back equally as much on the horse. Will the wagon be set into motion? a. No, because the forces cancel each other out. b. Yes, because there is a net force acting on the wagon. c. Yes, because there is time delay between action and reaction. d. Y ...
Equilibrium Problems
... 8. An Accident victim with a broken leg is being placed in traction. The patient wears a special boot with a massless, frictionless pulley attached to the sole. The foot and boot together have a mass of 4 kg, and the Doctor has decided to hang a 6.0 kg mass from the rope. The boot is held suspended ...
... 8. An Accident victim with a broken leg is being placed in traction. The patient wears a special boot with a massless, frictionless pulley attached to the sole. The foot and boot together have a mass of 4 kg, and the Doctor has decided to hang a 6.0 kg mass from the rope. The boot is held suspended ...
FA#5--Rotational Dynamics I FA#5
... frictional force is applied at a point 40 cm from the chair’s rotation axis, in the direction that causes the greatest angular acceleration. If that angular acceleration is 1.8 rad/s2, what is the total moment of inertia about the axis of you and the chair? ...
... frictional force is applied at a point 40 cm from the chair’s rotation axis, in the direction that causes the greatest angular acceleration. If that angular acceleration is 1.8 rad/s2, what is the total moment of inertia about the axis of you and the chair? ...
Ch 2Conceptual Physi#39AC2F
... Aristotle would say that the rolling billiard ball stopped because a force was not acting on it to keep it going. He would be wrong. Galileo would say that an unbalanced force must have acted upon the ball to stop it. 13. In terms of newton’s first law, how does a car head rest help to guard against ...
... Aristotle would say that the rolling billiard ball stopped because a force was not acting on it to keep it going. He would be wrong. Galileo would say that an unbalanced force must have acted upon the ball to stop it. 13. In terms of newton’s first law, how does a car head rest help to guard against ...
Lecture-04-09
... If you stop pushing an object, does it stop moving? Only if there is friction! In the absence of any net external force, an object at rest will remain at rest. In the absence of any net external force a moving object will keep moving at a constant speed in a straight line. This is also known as the ...
... If you stop pushing an object, does it stop moving? Only if there is friction! In the absence of any net external force, an object at rest will remain at rest. In the absence of any net external force a moving object will keep moving at a constant speed in a straight line. This is also known as the ...