Assignment #3 - Long Branch Public Schools
... solution prior to sending an email requesting help. If you do require assistance state what question you are working on and specifically what steps/thoughts you have toward a solution. a. ...
... solution prior to sending an email requesting help. If you do require assistance state what question you are working on and specifically what steps/thoughts you have toward a solution. a. ...
Forces and the Laws of Motion
... Forces and the Laws of Motion • 4.3 Newton’s Third Law of Motion – If two objects interact, the magnitude of the force exerted on object 1 by object 2 is equal to the magnitude of the force simultaneously exerted on object 2 by object 1, and these two forces are opposite in direction. – For every a ...
... Forces and the Laws of Motion • 4.3 Newton’s Third Law of Motion – If two objects interact, the magnitude of the force exerted on object 1 by object 2 is equal to the magnitude of the force simultaneously exerted on object 2 by object 1, and these two forces are opposite in direction. – For every a ...
Coning Angle
... free to flap up or down. The lift forces will tend to flap the blades up, while the centrifugal forces will tend to push the blades down. A static equilibrium is achieved in hover, where the blades come to rest at an equilibrium “coning” angle, called 0. In forward flight, the airloads tend to vary ...
... free to flap up or down. The lift forces will tend to flap the blades up, while the centrifugal forces will tend to push the blades down. A static equilibrium is achieved in hover, where the blades come to rest at an equilibrium “coning” angle, called 0. In forward flight, the airloads tend to vary ...
Forces in Fluids
... a. greater than the buoyant force, it will sink b. Less than the buoyant force, it will float c. Equal to the buoyant force, it will not sink 3. Examples a. Jellyfish – floats b. Turtle – underwater but can float in place c. lobster – more density than water and unbalanced forces cause it to sink be ...
... a. greater than the buoyant force, it will sink b. Less than the buoyant force, it will float c. Equal to the buoyant force, it will not sink 3. Examples a. Jellyfish – floats b. Turtle – underwater but can float in place c. lobster – more density than water and unbalanced forces cause it to sink be ...
Section 2. Mechanics Course Notes
... (g) solve problems using equations that represent uniformly accelerated motion in a straight line, including the motion of bodies falling in a uniform gravitational field without air resistance If a body falls in a vacuum near the Earths surface it has an acceleration g of freefall ...
... (g) solve problems using equations that represent uniformly accelerated motion in a straight line, including the motion of bodies falling in a uniform gravitational field without air resistance If a body falls in a vacuum near the Earths surface it has an acceleration g of freefall ...
Weightlessness
Weightlessness, or an absence of 'weight', is an absence of stress and strain resulting from externally applied mechanical contact-forces, typically normal forces from floors, seats, beds, scales, and the like. Counterintuitively, a uniform gravitational field does not by itself cause stress or strain, and a body in free fall in such an environment experiences no g-force acceleration and feels weightless. This is also termed ""zero-g"" where the term is more correctly understood as meaning ""zero g-force.""When bodies are acted upon by non-gravitational forces, as in a centrifuge, a rotating space station, or within a space ship with rockets firing, a sensation of weight is produced, as the contact forces from the moving structure act to overcome the body's inertia. In such cases, a sensation of weight, in the sense of a state of stress can occur, even if the gravitational field was zero. In such cases, g-forces are felt, and bodies are not weightless.When the gravitational field is non-uniform, a body in free fall suffers tidal effects and is not stress-free. Near a black hole, such tidal effects can be very strong. In the case of the Earth, the effects are minor, especially on objects of relatively small dimension (such as the human body or a spacecraft) and the overall sensation of weightlessness in these cases is preserved. This condition is known as microgravity and it prevails in orbiting spacecraft.