• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
9. Sheaf Cohomology Definition 9.1. Let X be a topological space
9. Sheaf Cohomology Definition 9.1. Let X be a topological space

... are functors H i from the category of sheaves of abelian groups on X to the category of abelian groups such that (1) H 0 (X, F) = Γ(X, F). (2) Given a short exact sequence, 0 −→ F −→ G −→ H −→ 0, there are coboundary maps H i (X, H) −→ H i+1 (X, F). which can be strung together to get a long exact s ...
Exercise Sheet 4
Exercise Sheet 4

... (a) Prove that the sheaf of normal vector fields on S n−1 ⊂ Rn is isomorphic to the sheaf of functions C ∞ (−, R). (b) Give an example of a differentiable submanifold of codimension 1 where this does not hold. *2. Let X be a topological space and j : U ,→ X the embedding of an open subset. (a) Prove ...
Topology Qual Winter 2000
Topology Qual Winter 2000

... define functors G and H by G(X,A)=Hp(X,A), H(X,A)=Hp-1(X,A). Show that the map * is a natural transformation of G to H. Define and give an example (with proof) of a contravariant functor. 2. State and prove the Kunneth theorem for topological spaces. 3. a) Let F be the closed orientable surface of ...
What Is...a Topos?, Volume 51, Number 9
What Is...a Topos?, Volume 51, Number 9

... functor is the stalk functor E → Ex . But new phenomena occur. Deligne has constructed examples of toposes without points (he has also given criteria for the existence of “enough points”) [SGA 4 IV 7, VI 9]. Moreover, if x and y are points of a topos T , there may exist nontrivial morphisms (of fun ...
Algebraic topology exam
Algebraic topology exam

... Answer eight questions, four from part I and four from part II. Give as much detail in your answers as you can. Part I 1. Prove the Zig-Zag lemma: let 0  C  D  E  0 be a short exact sequence of chain complexes with the above maps being f: C  D, g : D  E. Show that there is a long exact sequenc ...
PDF
PDF

... The Role of Ω-spectra in Reduced Cohomology Theories ...
< 1 ... 3 4 5 6 7

Étale cohomology

In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type.
  • studyres.com © 2026
  • DMCA
  • Privacy
  • Terms
  • Report