• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Adiabatic Circuits and Reversible Computing - UF CISE
Adiabatic Circuits and Reversible Computing - UF CISE

The Computational Complexity of Linear Optics
The Computational Complexity of Linear Optics

... Predicting the results of a given quantum-mechanical experiment, to finite accuracy, cannot be done by a classical computer in probabilistic polynomial time, unless factoring integers can as well. As the above formulation makes clear, Shor’s result is not merely about some hypothetical future in whi ...
Strongly interacting systems in AMO physics
Strongly interacting systems in AMO physics

The Role of Indistinguishability of Identical Particles in
The Role of Indistinguishability of Identical Particles in

Ph410 Physics of Quantum Computation1
Ph410 Physics of Quantum Computation1

Quantum Information with Fermionic Gaussian States - Max
Quantum Information with Fermionic Gaussian States - Max

... In this Thesis we study finite-dimensional fermionic Gaussian states and channels. In physics, Gaussian approximation is a frequently used tool for solving many-body problems. Gaussian approximation relies on describing system fully in terms of two-point correlation functions. This means that all th ...
From quantum foundations to quantum information protocols and back PhD thesis
From quantum foundations to quantum information protocols and back PhD thesis

... July 9, 2015 ...
COMPUTER-AIDED-DESIGN METHODS FOR EMERGING
COMPUTER-AIDED-DESIGN METHODS FOR EMERGING

Elliptic Curve Cryptography and Quantum Computing
Elliptic Curve Cryptography and Quantum Computing

... Cryptography has grown immensely since the beginning of time. Each society throughout history has shown incredible skill and thought to keep its secrets safe: from the early scytale, to the Atbash cipher, to the Caesar cipher, to the modern cryptosystems of today such as the Rivest-ShamirAdleman enc ...
Conceptual Understanding of Quantum Mechanics
Conceptual Understanding of Quantum Mechanics

Chapter 1 - BYU Physics and Astronomy
Chapter 1 - BYU Physics and Astronomy

Classical and quantum mechanics via Lie algebras
Classical and quantum mechanics via Lie algebras

Quantum Knots and Lattices, or a Blueprint for Quantum Systems
Quantum Knots and Lattices, or a Blueprint for Quantum Systems

Information and Entropy in Neural Networks and Interacting Systems
Information and Entropy in Neural Networks and Interacting Systems

... Ratio of expected value (first moment) of new entropy plotted against bin number K and prior exponent β for entropy parameter q = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . 196 ...
Applied Bohmian mechanics
Applied Bohmian mechanics

Ultracold atoms in optical lattices generated by quantized light fields
Ultracold atoms in optical lattices generated by quantized light fields

Post-quantum Security of the CBC, CFB, OFB, CTR
Post-quantum Security of the CBC, CFB, OFB, CTR

Focus on out-of-equilibrium dynamics in strongly interacting one
Focus on out-of-equilibrium dynamics in strongly interacting one

Delayed-choice gedanken experiments and their realizations
Delayed-choice gedanken experiments and their realizations

diffraction uniformly illuminated circular aperture
diffraction uniformly illuminated circular aperture

Electric dipoles at ultralow temperatures
Electric dipoles at ultralow temperatures

Quantum Information Processing - wolfgang
Quantum Information Processing - wolfgang

Wormholes in Spacetime and the Constants of Nature
Wormholes in Spacetime and the Constants of Nature

Detecting a Stochastic Gravitational
Detecting a Stochastic Gravitational

Models of quantum computation and quantum programming
Models of quantum computation and quantum programming

< 1 ... 7 8 9 10 11 12 13 14 15 ... 252 >

Max Born



Max Born (German: [bɔɐ̯n]; 11 December 1882 – 5 January 1970) was a German physicist and mathematician who was instrumental in the development of quantum mechanics. He also made contributions to solid-state physics and optics and supervised the work of a number of notable physicists in the 1920s and 30s. Born won the 1954 Nobel Prize in Physics for his ""fundamental research in Quantum Mechanics, especially in the statistical interpretation of the wave function"".Born was born in 1882 in Breslau, then in Germany, now in Poland and known as Wrocław. He entered the University of Göttingen in 1904, where he found the three renowned mathematicians, Felix Klein, David Hilbert and Hermann Minkowski. He wrote his Ph.D. thesis on the subject of ""Stability of Elastica in a Plane and Space"", winning the University's Philosophy Faculty Prize. In 1905, he began researching special relativity with Minkowski, and subsequently wrote his habilitation thesis on the Thomson model of the atom. A chance meeting with Fritz Haber in Berlin in 1918 led to discussion of the manner in which an ionic compound is formed when a metal reacts with a halogen, which is today known as the Born–Haber cycle.In the First World War after originally being placed as a radio operator, due to his specialist knowledge he was moved to research duties regarding sound ranging. In 1921, Born returned to Göttingen, arranging another chair for his long-time friend and colleague James Franck. Under Born, Göttingen became one of the world's foremost centres for physics. In 1925, Born and Werner Heisenberg formulated the matrix mechanics representation of quantum mechanics. The following year, he formulated the now-standard interpretation of the probability density function for ψ*ψ in the Schrödinger equation, for which he was awarded the Nobel Prize in 1954. His influence extended far beyond his own research. Max Delbrück, Siegfried Flügge, Friedrich Hund, Pascual Jordan, Maria Goeppert-Mayer, Lothar Wolfgang Nordheim, Robert Oppenheimer, and Victor Weisskopf all received their Ph.D. degrees under Born at Göttingen, and his assistants included Enrico Fermi, Werner Heisenberg, Gerhard Herzberg, Friedrich Hund, Pascual Jordan, Wolfgang Pauli, Léon Rosenfeld, Edward Teller, and Eugene Wigner.In January 1933, the Nazi Party came to power in Germany, and Born, who was Jewish, was suspended. He emigrated to Britain, where he took a job at St John's College, Cambridge, and wrote a popular science book, The Restless Universe, as well as Atomic Physics, which soon became a standard text book. In October 1936, he became the Tait Professor of Natural Philosophy at the University of Edinburgh, where, working with German-born assistants E. Walter Kellermann and Klaus Fuchs, he continued his research into physics. Max Born became a naturalised British subject on 31 August 1939, one day before World War II broke out in Europe. He remained at Edinburgh until 1952. He retired to Bad Pyrmont, in West Germany. He died in hospital in Göttingen on 5 January 1970.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report