• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Geometry (H) Lesson 2.1 2.1 Notes: Inductive Reasoning Lesson
Geometry (H) Lesson 2.1 2.1 Notes: Inductive Reasoning Lesson

... 10. Chess The small squares on a chessboard can be combined to form larger squares. For example, there are 64 1 x 1 squares and one 8 x 8 square. Use inductive reasoning to determine how many 2 x 2 squares, 3 x 3 squares, and so on, are on a chessboard. What is the total number of squares on a chess ...
Note on a conjecture of PDTA Elliott
Note on a conjecture of PDTA Elliott

Conjectures Chapter 2
Conjectures Chapter 2

www.crm.umontreal.ca
www.crm.umontreal.ca

Patterns and Inductive Reasoning
Patterns and Inductive Reasoning

1-1-patterns-inductive-reasoning-2
1-1-patterns-inductive-reasoning-2

1.1 Patterns and Inductive Reasoning
1.1 Patterns and Inductive Reasoning

... about how often a full moon occurs. Specific cases: In 2005, the first six full moons occur on January 25, February 24, March 25, April 24, May 23 and June 22. ...
1.1 Patterns and Inductive Reasoning
1.1 Patterns and Inductive Reasoning

1.1 Patterns and Inductive Reasoning
1.1 Patterns and Inductive Reasoning

Powerpoint
Powerpoint

Math 3:  Unit 1 – Reasoning and Proof Inductive, Deductive
Math 3: Unit 1 – Reasoning and Proof Inductive, Deductive

Date
Date

Lesson 2-1
Lesson 2-1

... The midpoint of AB is (3, –2). The coordinates of A are (7, –1). What are the coordinates of B? A. (–1, –3) ...
Over Chapter 1
Over Chapter 1

... Examine the data in the table. Find two cities such that the population of the first is greater than the population of the second, while the unemployment rate of the first is less than the unemployment rate of the second. El Paso has a greater population than Maverick, while El Paso has a lower unem ...
Over Chapter 1
Over Chapter 1

File
File

iNumbers A Practice Understanding Task – Sample Answers
iNumbers A Practice Understanding Task – Sample Answers

Geometry Retest Test 3 Review
Geometry Retest Test 3 Review

Exploring Mathematics Universe - KSU Web Home
Exploring Mathematics Universe - KSU Web Home

... hanging were on Friday then it would not be a surprise, since he would know by Thursday night that he was to be hanged the following day, as it would be the only day left. Since the judge's sentence stipulated that the hanging would be a surprise to him, he concludes it cannot occur on Friday. He th ...
2.1 Use Inductive Reasoning
2.1 Use Inductive Reasoning

Conjecture
Conjecture

Math 3:  Unit 1 – Reasoning and Proof Inductive, Deductive
Math 3: Unit 1 – Reasoning and Proof Inductive, Deductive

From Rainbow to the Lonely Runner
From Rainbow to the Lonely Runner

From Rainbow to the Lonely Runner
From Rainbow to the Lonely Runner

Ch 6 Definitions List
Ch 6 Definitions List

< 1 ... 14 15 16 17 18 19 20 21 >

Poincaré conjecture



In mathematics, the Poincaré conjecture (/pwɛn.kɑːˈreɪ/ pwen-kar-AY; French: [pwɛ̃kaʁe]) is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space. The conjecture states: Every simply connected, closed 3-manifold is homeomorphic to the 3-sphere. An equivalent form of the conjecture involves a coarser form of equivalence than homeomorphism called homotopy equivalence: if a 3-manifold is homotopy equivalent to the 3-sphere, then it is necessarily homeomorphic to it.Originally conjectured by Henri Poincaré, the theorem concerns a space that locally looks like ordinary three-dimensional space but is connected, finite in size, and lacks any boundary (a closed 3-manifold). The Poincaré conjecture claims that if such a space has the additional property that each loop in the space can be continuously tightened to a point, then it is necessarily a three-dimensional sphere. The analogous conjectures for all higher dimensions had already been proven.After nearly a century of effort by mathematicians, Grigori Perelman presented a proof of the conjecture in three papers made available in 2002 and 2003 on arXiv. The proof built upon the program of Richard Hamilton to use the Ricci flow to attempt to solve the problem. Hamilton later introduced a modification of the standard Ricci flow, called Ricci flow with surgery to systematically excise singular regions as they develop, in a controlled way, but was unable to prove this method ""converged"" in three dimensions. Perelman completed this portion of the proof. Several teams of mathematicians verified that Perelman's proof was correct.The Poincaré conjecture, before being proven, was one of the most important open questions in topology. In 2000, it was named one of the seven Millennium Prize Problems, for which the Clay Mathematics Institute offered a $1,000,000 prize for the first correct solution. Perelman's work survived review and was confirmed in 2006, leading to his being offered a Fields Medal, which he declined. Perelman was awarded the Millennium Prize on March 18, 2010. On July 1, 2010, he turned down the prize saying that he believed his contribution in proving the Poincaré conjecture was no greater than Hamilton's (who first suggested using the Ricci flow for the solution). As of 2015, the Poincaré conjecture is the only solved Millennium problem.On December 22, 2006, the journal Science honored Perelman's proof of the Poincaré conjecture as the scientific ""Breakthrough of the Year"", the first time this honor was bestowed in the area of mathematics.
  • studyres.com © 2026
  • DMCA
  • Privacy
  • Terms
  • Report