• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Geometry - School District of Clayton
Geometry - School District of Clayton

File
File

On Quadrilaterals
On Quadrilaterals

... The investigations in the books are about the angles, the sides, and the diagonals. How about including (a) the intersection point of the diagonals (the diacenter), (b) the medians (segments from midpoints of opposite sides, (c) the intersection point of the medians (medcenter), (d) the segments fro ...
1.1 Points, Lines, and Planes
1.1 Points, Lines, and Planes

Proving Triangles and Quadrilaterals are Special
Proving Triangles and Quadrilaterals are Special

Chapter 4 - Mater Academy Charter Middle/ High
Chapter 4 - Mater Academy Charter Middle/ High

... CHAPTER 4 CONGRUENT TRIANGLES ...
Congruence
Congruence

Triangle Classification
Triangle Classification

Basics Geometry
Basics Geometry

... Solution: A city is usually labeled with a dot, or point, on a globe. Example 2: What best describes the surface of a movie screen? A. point B. line C. plane Solution: The surface of a movie screen is most like a plane. Beyond the Basics Now we can use point, line, and plane to define new terms. Spa ...
Geometry
Geometry

Congruent Figures
Congruent Figures

properties of polygons
properties of polygons

Quadrilateral Summary
Quadrilateral Summary

TEKS Content Topics
TEKS Content Topics

Saccheri and Lambert quadrilateral in Hyperbolic Geometry.
Saccheri and Lambert quadrilateral in Hyperbolic Geometry.

Triangle - I Love Maths
Triangle - I Love Maths

Chapter 3
Chapter 3

Corresponding Parts of Congruent Triangles
Corresponding Parts of Congruent Triangles

Triangle - Gyanpedia
Triangle - Gyanpedia

GETE0305
GETE0305

... pay (P) a worker receives for loading x number of boxes onto a truck. a. What is the slope of the line represented by the given equation? b. What does the slope represent in this situation? c. What is the y-intercept of the line? d. What does the y-intercept represent in this situation? 46. Inclines ...
On Lobachevsky`s trigonometric formulae
On Lobachevsky`s trigonometric formulae

File
File

Geometry
Geometry

Stability of Quasicrystal Frameworks in 2D and 3D
Stability of Quasicrystal Frameworks in 2D and 3D

On Lobachevsky`s trigonometric formulae
On Lobachevsky`s trigonometric formulae

< 1 2 3 4 5 6 7 8 ... 75 >

Tessellation



A tessellation of a flat surface is the tiling of a plane using one or more geometric shapes, called tiles, with no overlaps and no gaps. In mathematics, tessellations can be generalized to higher dimensions and a variety of geometries.A periodic tiling has a repeating pattern. Some special kinds include regular tilings with regular polygonal tiles all of the same shape, and semi-regular tilings with regular tiles of more than one shape and with every corner identically arranged. The patterns formed by periodic tilings can be categorized into 17 wallpaper groups. A tiling that lacks a repeating pattern is called ""non-periodic"". An aperiodic tiling uses a small set of tile shapes that cannot form a repeating pattern. In the geometry of higher dimensions, a space-filling or honeycomb is also called a tessellation of space.A real physical tessellation is a tiling made of materials such as cemented ceramic squares or hexagons. Such tilings may be decorative patterns, or may have functions such as providing durable and water-resistant pavement, floor or wall coverings. Historically, tessellations were used in Ancient Rome and in Islamic art such as in the decorative tiling of the Alhambra palace. In the twentieth century, the work of M. C. Escher often made use of tessellations, both in ordinary Euclidean geometry and in hyperbolic geometry, for artistic effect. Tessellations are sometimes employed for decorative effect in quilting. Tessellations form a class of patterns in nature, for example in the arrays of hexagonal cells found in honeycombs.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report