• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
x - Greater Nanticoke Area School District
x - Greater Nanticoke Area School District

Chapter Four Learning Objectives Congruent Triangles
Chapter Four Learning Objectives Congruent Triangles

Trigonometry I - Open School BC
Trigonometry I - Open School BC

Triangles and Squares
Triangles and Squares

Congruent Triangles
Congruent Triangles

Lesson 19: Equations for Tangent Lines to Circles
Lesson 19: Equations for Tangent Lines to Circles

5.3 Parallelograms and Rhombuses
5.3 Parallelograms and Rhombuses

Conjectures
Conjectures

Supplementary and Complementary Angles
Supplementary and Complementary Angles

The Amazing Circle
The Amazing Circle

final-exam-outline-2016-2017 - Mrs. Laura Rogers Math Class
final-exam-outline-2016-2017 - Mrs. Laura Rogers Math Class

View - Department of Training and Workforce Development
View - Department of Training and Workforce Development

ppt
ppt

... Solve triangle ABC if A  50º, C  33.5º, and b  76. Keep in mind that we must be given one of the three ratios to apply the Law of Sines. In this example, we are given that b  76 and we found that B  96.5º. Thus, we use the ratio b/sin B, or 76/sin96.5º, to find the other two sides. Use the Law ...
6.3 - Trig identities ppt
6.3 - Trig identities ppt

Key - korpisworld
Key - korpisworld

Slide 15
Slide 15

13 Trigonometric Graphs
13 Trigonometric Graphs

geometry pacing guide - Kalispell Public Schools
geometry pacing guide - Kalispell Public Schools

section-d
section-d

Areas of Regular Polygons and Circles
Areas of Regular Polygons and Circles

Angles
Angles

Introduction to Hyperbolic Geometry - Conference
Introduction to Hyperbolic Geometry - Conference

... " Hyperbolic Geometry is, defined by, the geometry you get by assuming all the axioms for Neutral Geometry1 and replacing Hilbert‟s parallel postulate by one of its negation, which we shall call the „Hyperbolic Parallel Axiom' " . Returning to the definition of Hyperbolic Geometry, two parts were em ...
Geometry Pacing Guide 2014-2015 Unit Topic SPI To recognize
Geometry Pacing Guide 2014-2015 Unit Topic SPI To recognize

Trig Exam 1 Review
Trig Exam 1 Review

Exploration 4-2a: Properties of Trigonometric Functions
Exploration 4-2a: Properties of Trigonometric Functions

< 1 ... 76 77 78 79 80 81 82 83 84 ... 807 >

Trigonometric functions



In mathematics, the trigonometric functions (also called the circular functions) are functions of an angle. They relate the angles of a triangle to the lengths of its sides. Trigonometric functions are important in the study of triangles and modeling periodic phenomena, among many other applications.The most familiar trigonometric functions are the sine, cosine, and tangent. In the context of the standard unit circle (a circle with radius 1 unit), where a triangle is formed by a ray originating at the origin and making some angle with the x-axis, the sine of the angle gives the length of the y-component (the opposite to the angle or the rise) of the triangle, the cosine gives the length of the x-component (the adjacent of the angle or the run), and the tangent function gives the slope (y-component divided by the x-component). More precise definitions are detailed below. Trigonometric functions are commonly defined as ratios of two sides of a right triangle containing the angle, and can equivalently be defined as the lengths of various line segments from a unit circle. More modern definitions express them as infinite series or as solutions of certain differential equations, allowing their extension to arbitrary positive and negative values and even to complex numbers.Trigonometric functions have a wide range of uses including computing unknown lengths and angles in triangles (often right triangles). In this use, trigonometric functions are used, for instance, in navigation, engineering, and physics. A common use in elementary physics is resolving a vector into Cartesian coordinates. The sine and cosine functions are also commonly used to model periodic function phenomena such as sound and light waves, the position and velocity of harmonic oscillators, sunlight intensity and day length, and average temperature variations through the year.In modern usage, there are six basic trigonometric functions, tabulated here with equations that relate them to one another. Especially with the last four, these relations are often taken as the definitions of those functions, but one can define them equally well geometrically, or by other means, and then derive these relations.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report