• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
week6
week6

Proving Triangles Congruent (part 2)
Proving Triangles Congruent (part 2)

Trig Review
Trig Review

3 points each
3 points each

Math Content – Sum of Interior Angles
Math Content – Sum of Interior Angles

5-1 Midsegments of Triangles
5-1 Midsegments of Triangles

... HELP ...
Lesson 15
Lesson 15

11th quiz-solution
11th quiz-solution

MTH 114 Review Topics
MTH 114 Review Topics

... 1. Given the angle 9 π /7 a) sketch the angle in standard position b) find 2 angles coterminal (one positive and one and one negative) c) find the reference angle d) find the supplement of reference angle e) find the complement of the reference angle f) convert to degrees g) convert to degrees, minu ...
Introductory Lecture on Apollonius
Introductory Lecture on Apollonius

Polygons 7.1 Triangle Application Theorems
Polygons 7.1 Triangle Application Theorems

Woodford`s Power point slide
Woodford`s Power point slide

... In an attempt to follow this argument for triangle 1 we find that we cannot reach any contradiction. Therefore we have our third similarity type of the Main Theorem. ...
Section 8.3 Proving Triangles Similar
Section 8.3 Proving Triangles Similar

... Section 8.3 Proving Triangles Similar By: Asad Ashraf ...
angle bisector
angle bisector

Name: Hour: _____ Date: U4 Geometry Construct/draw geometric
Name: Hour: _____ Date: U4 Geometry Construct/draw geometric

cannot use - WordPress.com
cannot use - WordPress.com

MTH 120 — Fall — 2007 Essex County College — Division of
MTH 120 — Fall — 2007 Essex County College — Division of

Triangle Trigonometry (Part 1)
Triangle Trigonometry (Part 1)

Pythagoras and President Garfield
Pythagoras and President Garfield

Name
Name

Derivatives of Trigonometric Functions
Derivatives of Trigonometric Functions

PARALLEL LINES CUT BY A TRANSVERSAL
PARALLEL LINES CUT BY A TRANSVERSAL

Geometry Basics
Geometry Basics

8-3 - s3.amazonaws.com
8-3 - s3.amazonaws.com

... the line. In the diagram, 1 is the angle of elevation from the tower T to the plane P. An angle of depression is the angle formed by a horizontal line and a line of sight to a point below the line. 2 is the angle of depression from the plane to the tower. ...
"Here`s to Looking at Euclid" A Snapshot of Hyperbolic Geometry
"Here`s to Looking at Euclid" A Snapshot of Hyperbolic Geometry

< 1 ... 455 456 457 458 459 460 461 462 463 ... 807 >

Trigonometric functions



In mathematics, the trigonometric functions (also called the circular functions) are functions of an angle. They relate the angles of a triangle to the lengths of its sides. Trigonometric functions are important in the study of triangles and modeling periodic phenomena, among many other applications.The most familiar trigonometric functions are the sine, cosine, and tangent. In the context of the standard unit circle (a circle with radius 1 unit), where a triangle is formed by a ray originating at the origin and making some angle with the x-axis, the sine of the angle gives the length of the y-component (the opposite to the angle or the rise) of the triangle, the cosine gives the length of the x-component (the adjacent of the angle or the run), and the tangent function gives the slope (y-component divided by the x-component). More precise definitions are detailed below. Trigonometric functions are commonly defined as ratios of two sides of a right triangle containing the angle, and can equivalently be defined as the lengths of various line segments from a unit circle. More modern definitions express them as infinite series or as solutions of certain differential equations, allowing their extension to arbitrary positive and negative values and even to complex numbers.Trigonometric functions have a wide range of uses including computing unknown lengths and angles in triangles (often right triangles). In this use, trigonometric functions are used, for instance, in navigation, engineering, and physics. A common use in elementary physics is resolving a vector into Cartesian coordinates. The sine and cosine functions are also commonly used to model periodic function phenomena such as sound and light waves, the position and velocity of harmonic oscillators, sunlight intensity and day length, and average temperature variations through the year.In modern usage, there are six basic trigonometric functions, tabulated here with equations that relate them to one another. Especially with the last four, these relations are often taken as the definitions of those functions, but one can define them equally well geometrically, or by other means, and then derive these relations.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report