• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Solve real-world and mathematical problems involving volume of
Solve real-world and mathematical problems involving volume of

4.G.A.1
4.G.A.1

Chapter 11
Chapter 11

8.5 Proving Triangles are Similar
8.5 Proving Triangles are Similar

3-1 Lines and Angles
3-1 Lines and Angles

Classify each triangle as acute, equiangular, obtuse, or right. 11
Classify each triangle as acute, equiangular, obtuse, or right. 11

Course Syllabus - Fort Saskatchewan High
Course Syllabus - Fort Saskatchewan High

1.4/1.5 notes
1.4/1.5 notes

CBSE IX Congruence of Triangle Solved Questions
CBSE IX Congruence of Triangle Solved Questions

Physics 11 Reading Booklet
Physics 11 Reading Booklet

Section 4-6: Triangle Congruence
Section 4-6: Triangle Congruence

MTH 06 - Nelson Boan (Spr. 00)
MTH 06 - Nelson Boan (Spr. 00)

... 2. recognize the need for/characteristics of a precise definition; 3. know the definition/symbol for line segment and its length; 4. accept and state the initial postulates involving lines and planes (in your own words); 5. use the Segment-Addition Postulate to write equations; 6. understand the con ...
Identify the transversal connecting each pair of angles. Then classify
Identify the transversal connecting each pair of angles. Then classify

Scope Geo Reg FINAL - The School District of Palm Beach County
Scope Geo Reg FINAL - The School District of Palm Beach County

NUMBER AND OPERATIONS IN BASE TEN
NUMBER AND OPERATIONS IN BASE TEN

Tricky Triangles - Etiwanda E
Tricky Triangles - Etiwanda E

Geometry Honors
Geometry Honors

Geometry - Houghton Mifflin Harcourt
Geometry - Houghton Mifflin Harcourt

- Kennedy HS
- Kennedy HS

Cofunction and Pythagorean Identities
Cofunction and Pythagorean Identities

Regional Integrated Geometry Curriculum
Regional Integrated Geometry Curriculum

The Tangent Ratio
The Tangent Ratio

... 1. Each person draw a right triangle (∆ABC) where ‫ﮮ‬A has a measure of 30º. 2. Each person in the group should draw the triangle with different side lengths, then measure the legs using inches. 3. Compute the ratio leg opposite ‫ﮮ‬A leg adjacent ‫ﮮ‬A 4. Compare the ratio with the others in the grou ...
math eog review - Mrs. Campbell`s 5th Grade Class
math eog review - Mrs. Campbell`s 5th Grade Class

Document
Document

Unit 3- Sections 3.1-3.3, 3.6 - Math With Mrs. Drost
Unit 3- Sections 3.1-3.3, 3.6 - Math With Mrs. Drost

... congruent angles, then lines are perpendicular If 2 lines are perpendicular, then they form 4 right angles If 2 sides of 2 adjacent, acute angles are perpendicular, then angles are complementary If a transversal is perpendicular to one of two parallel lines, then it is perpendicular to the other In ...
< 1 ... 333 334 335 336 337 338 339 340 341 ... 807 >

Trigonometric functions



In mathematics, the trigonometric functions (also called the circular functions) are functions of an angle. They relate the angles of a triangle to the lengths of its sides. Trigonometric functions are important in the study of triangles and modeling periodic phenomena, among many other applications.The most familiar trigonometric functions are the sine, cosine, and tangent. In the context of the standard unit circle (a circle with radius 1 unit), where a triangle is formed by a ray originating at the origin and making some angle with the x-axis, the sine of the angle gives the length of the y-component (the opposite to the angle or the rise) of the triangle, the cosine gives the length of the x-component (the adjacent of the angle or the run), and the tangent function gives the slope (y-component divided by the x-component). More precise definitions are detailed below. Trigonometric functions are commonly defined as ratios of two sides of a right triangle containing the angle, and can equivalently be defined as the lengths of various line segments from a unit circle. More modern definitions express them as infinite series or as solutions of certain differential equations, allowing their extension to arbitrary positive and negative values and even to complex numbers.Trigonometric functions have a wide range of uses including computing unknown lengths and angles in triangles (often right triangles). In this use, trigonometric functions are used, for instance, in navigation, engineering, and physics. A common use in elementary physics is resolving a vector into Cartesian coordinates. The sine and cosine functions are also commonly used to model periodic function phenomena such as sound and light waves, the position and velocity of harmonic oscillators, sunlight intensity and day length, and average temperature variations through the year.In modern usage, there are six basic trigonometric functions, tabulated here with equations that relate them to one another. Especially with the last four, these relations are often taken as the definitions of those functions, but one can define them equally well geometrically, or by other means, and then derive these relations.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report