• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Mathematics I EOCT Vocabulary
Mathematics I EOCT Vocabulary

NM3M06DAA.pdf - Mira Costa High School
NM3M06DAA.pdf - Mira Costa High School

Summary of lesson
Summary of lesson

Geometry: properties of shapes Classifying quadrilaterals
Geometry: properties of shapes Classifying quadrilaterals

Warm-Up Exercises
Warm-Up Exercises

Application of a Circle – Angles and Arcs - TI Education
Application of a Circle – Angles and Arcs - TI Education

Algebra 1 A - Parkway C-2
Algebra 1 A - Parkway C-2

Unit 4 - CEISMC
Unit 4 - CEISMC

C2 (Edexcel)
C2 (Edexcel)

...  Understand, recall and use trigonometrical relationships in right-angled triangles, and use these to solve problems, including those involving bearings, then use these relationships in 3D contexts, including finding the angles between a line and a plane (but not the angle between two planes or bet ...
December 2008 - John Abbott Home Page
December 2008 - John Abbott Home Page

Find each numbered angle
Find each numbered angle

Geometry Module 2, Topic E, Lesson 31: Teacher
Geometry Module 2, Topic E, Lesson 31: Teacher

File
File

... At another indoor climbing wall, a person whose eyes are 6 feet from the floor places a mirror on the floor 60 feet from the base of the wall. They then walk backwards 5 feet before seeing the top of the wall in the center of the mirror. Use similar triangles to estimate the height of this wall. ...
ac theory-related mathematics and the generation of a sine wave
ac theory-related mathematics and the generation of a sine wave

Lesson 8-3: Proving Triangles Similar
Lesson 8-3: Proving Triangles Similar

... people. The same holds true for similar triangles (or other polygons for that matter). One way to think about similar triangles is two triangles that are not identical but do balance each other nicely. Thus, you will see similar triangles used extensively in art and architecture. Balance and proport ...
Unit 03 PC Form E
Unit 03 PC Form E

Proving Angle Relationships Objective
Proving Angle Relationships Objective

CK-12 Geometry: Isosceles and Equilateral Triangles Learning
CK-12 Geometry: Isosceles and Equilateral Triangles Learning

geometry - SchoolRack
geometry - SchoolRack

... If point B is between points A and C on a line then AB + BC = AC (Segment Addition Postulate) ...
2 Dimensional Geometry – Chapter Review
2 Dimensional Geometry – Chapter Review

89 On the Tucker Circles of a Spherical Triangle (Read 8th January
89 On the Tucker Circles of a Spherical Triangle (Read 8th January

Trigonometric Identities - Phoenix Union High School District
Trigonometric Identities - Phoenix Union High School District

... 5.5 Double-Angle Identities Double-Angle Identities ▪ An Application ▪ Product-to-Sum and Sum-to-Product Identities ...
Lesson 34 - EngageNY
Lesson 34 - EngageNY

Lesson Plans September 15
Lesson Plans September 15

Acceptable Reasons for Euclidean Geometry
Acceptable Reasons for Euclidean Geometry

< 1 ... 315 316 317 318 319 320 321 322 323 ... 807 >

Trigonometric functions



In mathematics, the trigonometric functions (also called the circular functions) are functions of an angle. They relate the angles of a triangle to the lengths of its sides. Trigonometric functions are important in the study of triangles and modeling periodic phenomena, among many other applications.The most familiar trigonometric functions are the sine, cosine, and tangent. In the context of the standard unit circle (a circle with radius 1 unit), where a triangle is formed by a ray originating at the origin and making some angle with the x-axis, the sine of the angle gives the length of the y-component (the opposite to the angle or the rise) of the triangle, the cosine gives the length of the x-component (the adjacent of the angle or the run), and the tangent function gives the slope (y-component divided by the x-component). More precise definitions are detailed below. Trigonometric functions are commonly defined as ratios of two sides of a right triangle containing the angle, and can equivalently be defined as the lengths of various line segments from a unit circle. More modern definitions express them as infinite series or as solutions of certain differential equations, allowing their extension to arbitrary positive and negative values and even to complex numbers.Trigonometric functions have a wide range of uses including computing unknown lengths and angles in triangles (often right triangles). In this use, trigonometric functions are used, for instance, in navigation, engineering, and physics. A common use in elementary physics is resolving a vector into Cartesian coordinates. The sine and cosine functions are also commonly used to model periodic function phenomena such as sound and light waves, the position and velocity of harmonic oscillators, sunlight intensity and day length, and average temperature variations through the year.In modern usage, there are six basic trigonometric functions, tabulated here with equations that relate them to one another. Especially with the last four, these relations are often taken as the definitions of those functions, but one can define them equally well geometrically, or by other means, and then derive these relations.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report