• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Classifying Triangles
Classifying Triangles

Classifying Triangles
Classifying Triangles

Classifying Triangles
Classifying Triangles

Classifying Triangles
Classifying Triangles

Classifying Triangles
Classifying Triangles

Classifying Triangles
Classifying Triangles

... A sk: On which triangle should I click? Click on the triangle that the students indicate. If this triangle is correct, stars will appear, and the episode will direct you to click on a new triangle. If this triangle is incorrect, a small “X” will appear, the instructions will wiggle, and a new triang ...
mbaworld.yolasite.com To find the number of factors of a given
mbaworld.yolasite.com To find the number of factors of a given

... If a1/a2 = b1/b2 <> c1/c2 , then we have no solution for these equations.(<> means not equal to ) If a1/a2 <> b1/b2 , then we have a unique solutions for these equations.. ...
Geometry Semester 1 Final Exam Review
Geometry Semester 1 Final Exam Review

Maui Community College - University of Hawaii Maui College
Maui Community College - University of Hawaii Maui College

Lines, Angles, and Figures
Lines, Angles, and Figures

Triangle - Gyanpedia
Triangle - Gyanpedia

... 1. Two plane figures are said to be congruent if they have same size and same shape. 2. The sum of the angles of a triangle is 1800 3. Two congruent figures can be made to coincide with each other by the method of superposition. 4. If a side and two angles of one triangle are equal to a side and two ...
Algebra II
Algebra II

Geometry - Unit 2 - Lesson 2.5 - Properties of Parallel Lines
Geometry - Unit 2 - Lesson 2.5 - Properties of Parallel Lines

DIFFERENTIAL GEOMETRY HW 3 32. Determine the dihedral
DIFFERENTIAL GEOMETRY HW 3 32. Determine the dihedral

Geometry Ch. 3 Parallel and Perpendicular Lines
Geometry Ch. 3 Parallel and Perpendicular Lines

Gr8-U5-Test - newtunings.com
Gr8-U5-Test - newtunings.com

Notes 5A Congruence and Triangles.notebook
Notes 5A Congruence and Triangles.notebook

90 90 90 and 180 180 0 ≠ c
90 90 90 and 180 180 0 ≠ c

1 Hemmer`s Axioms for Synthetic Euclidean Geometry (Geometry
1 Hemmer`s Axioms for Synthetic Euclidean Geometry (Geometry

MG4 Page 1 of 16
MG4 Page 1 of 16

... You will notice that the angles are equal, but in 6 the measurements of the sides are not equal, they are twice as big. We can draw many different sized triangles with the same angles, but having different sizes. The important point to remember in similar triangles is that the angles are the same an ...
8th Grade (Geometry)
8th Grade (Geometry)

Chapter 7: Trigonometric Identities and Equations
Chapter 7: Trigonometric Identities and Equations

... Period 3 Extra Credit PPT ...
Proofs of the inscribed angle theorem
Proofs of the inscribed angle theorem

Glencoe Pre
Glencoe Pre

Oblique Triangle Trigonometry
Oblique Triangle Trigonometry

... I knew that the longest side is always opposite the largest angle, so the 65.0 cm side must be opposite the obtuse angle, / A. Since ^  ABC is not a right triangle, I knew that I could not use the primary trigonometric ratios to determine the measure of /A. 4.2 Proving and Applying the Sine and Cosi ...
< 1 ... 293 294 295 296 297 298 299 300 301 ... 807 >

Trigonometric functions



In mathematics, the trigonometric functions (also called the circular functions) are functions of an angle. They relate the angles of a triangle to the lengths of its sides. Trigonometric functions are important in the study of triangles and modeling periodic phenomena, among many other applications.The most familiar trigonometric functions are the sine, cosine, and tangent. In the context of the standard unit circle (a circle with radius 1 unit), where a triangle is formed by a ray originating at the origin and making some angle with the x-axis, the sine of the angle gives the length of the y-component (the opposite to the angle or the rise) of the triangle, the cosine gives the length of the x-component (the adjacent of the angle or the run), and the tangent function gives the slope (y-component divided by the x-component). More precise definitions are detailed below. Trigonometric functions are commonly defined as ratios of two sides of a right triangle containing the angle, and can equivalently be defined as the lengths of various line segments from a unit circle. More modern definitions express them as infinite series or as solutions of certain differential equations, allowing their extension to arbitrary positive and negative values and even to complex numbers.Trigonometric functions have a wide range of uses including computing unknown lengths and angles in triangles (often right triangles). In this use, trigonometric functions are used, for instance, in navigation, engineering, and physics. A common use in elementary physics is resolving a vector into Cartesian coordinates. The sine and cosine functions are also commonly used to model periodic function phenomena such as sound and light waves, the position and velocity of harmonic oscillators, sunlight intensity and day length, and average temperature variations through the year.In modern usage, there are six basic trigonometric functions, tabulated here with equations that relate them to one another. Especially with the last four, these relations are often taken as the definitions of those functions, but one can define them equally well geometrically, or by other means, and then derive these relations.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report