• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Vertical-Angles-and-angle-pairs
Vertical-Angles-and-angle-pairs

... Four angles are formed at the point of intersection. Vertically opposite angles are congruent. Point of intersection ‘P’ is the common vertex of the four ...
Chapter 8B Geometry
Chapter 8B Geometry

Monday - Houston ISD
Monday - Houston ISD

Angles Teacher Notes
Angles Teacher Notes

GPS Geometry Summer Packet Name
GPS Geometry Summer Packet Name

Chapter 8B Geometry (2014)
Chapter 8B Geometry (2014)

File
File

... Only one of these shapes is a regular polygon, because only one has all sides equal in length and all angles equal in size. Discuss: • Which shape is a regular polygon? • How do you know? • What is this shape called? 1. Provide students with a table showing the different types of quadrilaterals. The ...
Paper Pre-Assessment: Reasoning Multiple
Paper Pre-Assessment: Reasoning Multiple

1st 9 weeks
1st 9 weeks

... G.WCE.5 Use the Distance Formula or Pythagorean Theorem to find the length of a segment on the coordinate plane. ...
Geometry - SOH CAH TOA
Geometry - SOH CAH TOA

Pacing
Pacing

Geometry Module 1, Topic B, Lesson 11: Student
Geometry Module 1, Topic B, Lesson 11: Student

Geometry 4.5
Geometry 4.5

Lesson 6-3 Similar Triangles with answers.notebook
Lesson 6-3 Similar Triangles with answers.notebook

Chapter 11 - BISD Moodle
Chapter 11 - BISD Moodle

Document
Document

... We must return to the original variable x. This can be done either by using trigonometric identities to express cot  in terms of sin  = x/3 or by drawing a diagram, as in Figure 1, where  is interpreted as an angle of a right triangle. ...
Solve for x
Solve for x

Triangle Definition of sin θ and cos θ ADJ (side adjacent to the angle
Triangle Definition of sin θ and cos θ ADJ (side adjacent to the angle

Lesson 11: Unknown Angle Proofs—Proofs of Known
Lesson 11: Unknown Angle Proofs—Proofs of Known

Export To Word
Export To Word

90 90 90 and 180 180 0 ≠ c
90 90 90 and 180 180 0 ≠ c

Contents: Similarity Similar figures Properties of similar figures
Contents: Similarity Similar figures Properties of similar figures

Set 1: Circumference Angles, Arcs, Chords and Inscribed Angles File
Set 1: Circumference Angles, Arcs, Chords and Inscribed Angles File

Definitions: Congruent triangle: all pairs of corresponding parts are
Definitions: Congruent triangle: all pairs of corresponding parts are

6.1 Introduction to Circle Notes
6.1 Introduction to Circle Notes

< 1 ... 228 229 230 231 232 233 234 235 236 ... 807 >

Trigonometric functions



In mathematics, the trigonometric functions (also called the circular functions) are functions of an angle. They relate the angles of a triangle to the lengths of its sides. Trigonometric functions are important in the study of triangles and modeling periodic phenomena, among many other applications.The most familiar trigonometric functions are the sine, cosine, and tangent. In the context of the standard unit circle (a circle with radius 1 unit), where a triangle is formed by a ray originating at the origin and making some angle with the x-axis, the sine of the angle gives the length of the y-component (the opposite to the angle or the rise) of the triangle, the cosine gives the length of the x-component (the adjacent of the angle or the run), and the tangent function gives the slope (y-component divided by the x-component). More precise definitions are detailed below. Trigonometric functions are commonly defined as ratios of two sides of a right triangle containing the angle, and can equivalently be defined as the lengths of various line segments from a unit circle. More modern definitions express them as infinite series or as solutions of certain differential equations, allowing their extension to arbitrary positive and negative values and even to complex numbers.Trigonometric functions have a wide range of uses including computing unknown lengths and angles in triangles (often right triangles). In this use, trigonometric functions are used, for instance, in navigation, engineering, and physics. A common use in elementary physics is resolving a vector into Cartesian coordinates. The sine and cosine functions are also commonly used to model periodic function phenomena such as sound and light waves, the position and velocity of harmonic oscillators, sunlight intensity and day length, and average temperature variations through the year.In modern usage, there are six basic trigonometric functions, tabulated here with equations that relate them to one another. Especially with the last four, these relations are often taken as the definitions of those functions, but one can define them equally well geometrically, or by other means, and then derive these relations.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report