• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Geometry 9 - Piscataway High School
Geometry 9 - Piscataway High School

Lesson 7: Solve for Unknown Angles—Transversals
Lesson 7: Solve for Unknown Angles—Transversals

Chapt 15 Review
Chapt 15 Review

Triangles
Triangles

2. ANSWER
2. ANSWER

Corresponding angles - Plain Local Schools
Corresponding angles - Plain Local Schools

... Corresponding angles angles in the same spot but on a different line ...
exam revision s1 2012 solns
exam revision s1 2012 solns

... A triathlon course is in the shape of a triangle. O is the start and finish point of the event. The swimming leg goes from O to A. The cycling leg is from A to B. The final leg, running from B to O. The coordinates of A and B are (3, 1) and (1, 14) respectively. The coordinates represent the distan ...
Practical Geometry
Practical Geometry

Lesson 11 - EngageNY
Lesson 11 - EngageNY

CCGPS Analytic Geometry Correlations
CCGPS Analytic Geometry Correlations

Discovering Math: Exploring Geometry
Discovering Math: Exploring Geometry

2016-2017 Mathematics Curriculum Map Geometry, Q1
2016-2017 Mathematics Curriculum Map Geometry, Q1

****Exam 4 Review Questions sec 5.3 to 6.3 rev0612 6th ed Math
****Exam 4 Review Questions sec 5.3 to 6.3 rev0612 6th ed Math

Park Forest Math Team 2015-16
Park Forest Math Team 2015-16

Chapter 4 Notes - Stevenson High School
Chapter 4 Notes - Stevenson High School

3. TRIGONOMETRIC FUNCTIONS
3. TRIGONOMETRIC FUNCTIONS

... We have discussed trigonometry at two levels so far. The first involves angles in triangles and the second involved rotations. But now we leave any geometrical interpretation behind and consider sin x etc as functions of a real number x. One reason for doing this is that the majority of uses of the ...
Section 1
Section 1

Lesson 3: Construct a Perpendicular Bisector
Lesson 3: Construct a Perpendicular Bisector

Herbert Strutt Primary School – Numeracy Target Setting
Herbert Strutt Primary School – Numeracy Target Setting

An Integrated Approach Module 6 Similarity and Right Triangle
An Integrated Approach Module 6 Similarity and Right Triangle

first quarter - Peoria Public Schools
first quarter - Peoria Public Schools

Lecture13.pdf
Lecture13.pdf

ExamView - Chapter_2_Review 16-17.tst
ExamView - Chapter_2_Review 16-17.tst

Special pairs of angles Part 2
Special pairs of angles Part 2

Math 32
Math 32

< 1 ... 124 125 126 127 128 129 130 131 132 ... 807 >

Trigonometric functions



In mathematics, the trigonometric functions (also called the circular functions) are functions of an angle. They relate the angles of a triangle to the lengths of its sides. Trigonometric functions are important in the study of triangles and modeling periodic phenomena, among many other applications.The most familiar trigonometric functions are the sine, cosine, and tangent. In the context of the standard unit circle (a circle with radius 1 unit), where a triangle is formed by a ray originating at the origin and making some angle with the x-axis, the sine of the angle gives the length of the y-component (the opposite to the angle or the rise) of the triangle, the cosine gives the length of the x-component (the adjacent of the angle or the run), and the tangent function gives the slope (y-component divided by the x-component). More precise definitions are detailed below. Trigonometric functions are commonly defined as ratios of two sides of a right triangle containing the angle, and can equivalently be defined as the lengths of various line segments from a unit circle. More modern definitions express them as infinite series or as solutions of certain differential equations, allowing their extension to arbitrary positive and negative values and even to complex numbers.Trigonometric functions have a wide range of uses including computing unknown lengths and angles in triangles (often right triangles). In this use, trigonometric functions are used, for instance, in navigation, engineering, and physics. A common use in elementary physics is resolving a vector into Cartesian coordinates. The sine and cosine functions are also commonly used to model periodic function phenomena such as sound and light waves, the position and velocity of harmonic oscillators, sunlight intensity and day length, and average temperature variations through the year.In modern usage, there are six basic trigonometric functions, tabulated here with equations that relate them to one another. Especially with the last four, these relations are often taken as the definitions of those functions, but one can define them equally well geometrically, or by other means, and then derive these relations.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report